

El rozamiento, base de la conducción

Sandro Rocci Profesor Emérito Universidad Politécnica de Madrid

Resumen

Se exponen en este artículo los fundamentos de la conducción de un automóvil, la cual se basa en la movilización de un rozamiento horizontal entre sus ruedas y el pavimento sobre el que circula. Se analizan los valores admisibles, que dependen de la velocidad operativa. La aplicación de estos conceptos a la distancia de parada (rozamiento longitudinal) y a la circulación en una curva peraltada (rozamiento transversal) permiten una mejor comprensión de las normas de diseño. Se realiza un comparación internacional.

PALABRAS CLAVE: Velocidad. Rozamiento. Deslizamiento. Distancia de parada. Curvas en planta.

1. Enfoque

Conducir un vehículo se resume en cambiar su velocidad (acelerando o dece-

lerando) o su dirección (girando): en ambos casos se necesita movilizar un rozamiento entre las ruedas y el pavimento, longitudinal en el primer caso y transversal en el segundo.

Pero el rozamiento movilizado, el cual se suele designar con la letra **f** seguida de un subíndice **l** ó **t** según sea longitudinal o transversal, tiene un límite que depende de:

- El neumático (materiales, rigidez, etc.).
- El pavimento (micro-textura, etc.).
- La interposición de un fluido lubricante (el agua de lluvia) en la interfaz entre neumático y pavimento, y las condiciones de su evacuación (dibujo del neumático, macrotextura y drenabilidad del pavimento, velocidad del vehículo, etc.).

Más allá de ese límite tienen lugar fenómenos que dificultan o aun impiden la conducción, con el consiguiente peligro. El más frecuente (aunque no el único) es un deslizamiento del neumático sobre el pavimento. El valor del límite o **resistencia al deslizamiento**, que se suele designar con la letra µ seguida de un subíndice I ó t según sea longitudinal o transversal, es muy variable y depende de los siguientes factores:

a) Tipo de pavimento:

- A igualdad de los demás factores, los tipos de pavimento normalmente empleados en carreteras presentan valores de μ muy similares.
- En otros tipos de pavimento, como los de hormigón sin textura o los tratamientos superficiales mediante riegos con gravilla, μ suele resultar inferior.
- Aplicando tratamientos superficiales especiales (lechadas bituminosas, micro-aglomerados, etc.) se consiguen valores de μ no inferiores a los de los pavimentos convencionales.
- b) Estado del pavimento: con el paso del tiempo y bajo la acción del tráfico, los pavimentos van perdiendo sus características superficiales iniciales:
 - Los áridos se pulen, perdiendo su microtextura, más o menos aprisa según su naturaleza.

- Disminuye la macrotextura, perjudicando la evacuación de la escorrentía.
- Si se producen ondulaciones longitudinales en el pavimento, el contacto entre éste y el neumático se vuelve irregular.
- Si se producen roderas, en ellas se puede acumular el agua.
- c) Humedad del pavimento: cuando llueve, la presencia de una película de agua sobre el pavimento disminuye notablemente el valor de μ. Descartando a priori la presencia de nieve o hielo, circunstancias meteorológicas extraordinarias en las que las velocidades se reducen apreciablemente, se pueden distinguir las situaciones siguientes:
 - · Pavimento seco.
 - Pavimento ligeramente mojado, con un espesor de película de agua del orden de 0,2 mm.
 - Pavimento mojado después de una sequía prolongada, pero con una acumulación de finos que pueden actuar de lubricante. A efectos prácticos, se puede asimilar a la siguiente.
 - Pavimento muy mojado, con un espesor de película de agua del orden de 2 mm. Este caso es excepcional, pues corresponde a lluvias muy intensas durante las cuales la inclinación y la macrotextura del pavimento ya no contribuyen eficazmente a la evacuación de la escorrentía superficial: en estas circunstancias, tampoco los conductores circulan a la velocidad que circularían en las otras dos situaciones.
- d) Estado de los neumáticos: aunque cuando el pavimento está seco no reviste especial importancia, sí resulta decisivo para la seguridad cuando está mojado:
 - La estudiada textura que lleva la superficie de rodadura del neumático contribuye a la evacuación de la película de agua, facilitando el contacto con el pavimento para movilizar el rozamiento.
 - Si el neumático está desgastado y su textura ha disminuido o se ha perdido, la evacuación de la película de agua es más dificultosa,

- y disminuye la zona de contacto efectivo, llegándose incluso al fenómeno del *hidroplaneo* o apoyo del neumático sólo sobre dicha película, con anulación del rozamiento movilizado.
- e) Velocidad: al igual que el estado de los neumáticos, se trata de un factor de escasa relevancia con pavimento seco, pero muy importante con pavimento mojado. Al aumentar la velocidad, se exige a las texturas del neumático y del pavimento que evacuen la viscosa película de agua más deprisa: con lo que la zona de contacto va disminuyendo hasta anularse, en cuyo momento se produce el hidroplaneo.

Aunque el fenómeno no es del todo simétrico¹, en carreteras se suelen considerar sólo las maniobras de frenado (rozamiento longitudinal) y de giro (rozamiento transversal). Para hallar el máximo rozamiento movilizado admisible para una combinación de ambas maniobras, se pueden hacer las siguientes consideraciones, basadas en la denominada fórmula elíptica:

$$\left(\frac{\mathbf{f}_{l}}{\mu_{l}}\right)^{2} + \left(\frac{\mathbf{f}_{t}}{\mu_{t}}\right)^{2} \leq 1$$

- Si todo el rozamiento movilizado se consume en mantener al vehículo en la trayectoria curva, f_t = μ_t (resistencia al deslizamiento transversal); no se podrá movilizar ningún deslizamiento longitudinal si hay que frenar o acelerar. Se trata, evidentemente, de un caso extremo.
- Si se limita el rozamiento transversal movilizado al 60% de la resistencia al deslizamiento transversal μ_t, todavía quedará para frenar o acelerar un 80% de la resistencia al deslizamiento longitudinal.
- Si se limita el rozamiento transversal movilizado al 40% de la resistencia al deslizamiento transversal μ_t, todavía quedará para frenar o acelerar un 92% de la resistencia al deslizamiento longitudinal. Es éste el compromiso que recogen la mayoría de las normas de trazado.
- Análogamente, al movilizar un rozamiento longitudinal se trata, en el lí-

mite, de una maniobra de emergencia en la que se puede alcanzar una deceleración igual a la proporcionada por la acción conjunta de la inclinación de la rasante y de la resistencia al rozamiento longitudinal del conjunto pavimento + neumático. En estas condiciones, no se podrá movilizar rozamiento transversal alguno para mantener al vehículo en una trayectoria curva.

Como en muchos otros campos de la Ingeniería, respecto de la resistencia al deslizamiento se emplean en la práctica unos márgenes de seguridad: definiéndose así unos rozamientos movilizados admisibles.

La práctica en diferentes países

2.1. Alemania

Para conocer la distribución de las resistencias al deslizamiento de los pavimentos mojados, y su variación con la velocidad V (km/h) a la que se obtuvo la medida, en Alemania se llevaron a cabo (¹) unas mediciones a nivel de red, que lograron encajar unos modelos del tipo

$$\mu = a + b \cdot \frac{V}{100} + c \cdot \left(\frac{V}{100}\right)^2$$

siendo **a**, **b** y **c** unos coeficientes dados por la *tabla 2.1-A*. Las mediciones se llevaron a cabo con distintos aparatos, pero parece que representan básicamente la resistencia al deslizamiento longitudinal.

Tabla 2.1-A. Valores medidos de los coeficientes de los modelos de la resistencia al deslizamiento

Coeficientes	Fracti	il x garant	tizado
Coefficientes	30	85	95
а	0,867	0,741	0,708
b	-0,622	-0,640	-0,721
С	0,137	0,150	0,241

La resistencia al deslizamiento dada por este modelo se reduce, a la hora de su aplicación práctica, en un 7,5% para tener en cuenta ciertas influencias del tipo de neumático con las que se han obtenido

¹ Es más fácil hacer deslizar un neumático aceerando que frenando.

Rutas Técnica

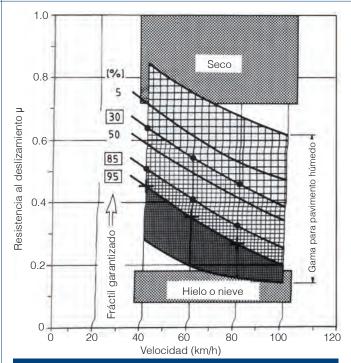


Figura 2.1-A

las medidas. El resultado se expone en la figura 2.1-A.

Parece prudente utilizar para el diseño unos valores de μ que estén garantizados al x %, es decir: que sólo haya un (100 – x) % de probabilidad de que el valor real de μ sea inferior al adoptado:

- El mínimo valor que se podría admitir en un pavimento nuevo es del orden de x = 30. Eso quiere decir que la resistencia al deslizamiento que proporciona un pavimento nuevo debería estar por encima de la que proporciona un 70% de los pavimentos de la red.
- Por encima de x = 85, la resistencia al deslizamiento que proporciona un pavimento sería inferior a la de un 85% de los pavimentos de la red. Habría que emprender alguna rehabilitación de las características superficiales del pavimento.
- Las condiciones más conservadoras para el diseño corresponderían a x = 95. Sólo un 5% de los pavimentos de la red presentarían una resistencia al deslizamiento inferior a la supuesta. A nivel de red, es prudente fijarse este conservador objetivo.

2.2. España

Estudios realizados en autopistas españolas han demostrado que:

Un 15% de los vehículos requeriría un

cambio inmediato de neumáticos.

- Un 35% de los neumáticos mostraba un desgaste superior al 50%.
- Un 62% de los neumáticos presentaba una baja presión de inflado.

Por lo tanto, y en cuanto al estado de los neumáticos, parece que la situación podría mejorar todavía mucho en España.

En otro estudio (²) se obtuvieron unos valores típicos de la resistencia al deslizamiento para un pavimento convencional en buen estado y distintas combinaciones de los demás factores (tabla 2.2-A).

Para un pavimento convencional en buen estado, la *tabla 2.2-B* muestra unos valores típicos de la resistencia al deslizamiento longitudinal, para distintas combinaciones de los demás factores; y la *tabla 2.2-C*, de la resistencia al deslizamiento transversal.

Se pueden extraer las siguientes conclusiones:

- Con pavimento seco, la resistencia al deslizamiento es muy elevada (del orden de 0,9), y depende poco de la velocidad o del estado de los neumáticos.
- Para velocidades superiores a 70 km/h, la resistencia al deslizamiento con neu-

Tabla 2.2-A. Val	ores típicos de la	resistencia	μal deslizar	miento			
Humedad del	Estado de los	Velocidad (km/h)					
pavimento	neumáticos	30	60	90			
Seco	Bueno	oprovimo	domonto 1 -	0,95			
Seco	Desgastado	аргохіттас	damente 1 -	0,90			
Ligeramente	Bueno	0,60	0,40	0,30			
mojado	Desgastado	0,35	0,20	0,10			
Musumaiada	Bueno	0,55	0,25	0,12			
Muy mojado	Desgastado	0,30	0,12	0,05			

lon	gitudinal		F				
Humedad del	Estado de los	Velocidad (km/h)					
pavimento	neumáticos	30	60	90			
Seco	Bueno	a ne va vina a d	damanta 1	0,95			
Seco	Desgastado	aproximad	Jamente i	0,90			
Ligeramente	Bueno	0,80	0,75	0,68			
mojado	Desgastado	0,80	0,50	0,38			
Muy mojado	Bueno	0,80	0,70	0,40			
iviuy mojado	Desgastado	0,75	0,40	0,20			

Tabla 2.2-B. Valores típicos de la resistencia μ, al deslizamiento

Tabla 2.2-C.	Valores típicos de la resistencia μ, al deslizamiento	
	transversal	

Humedad del	Estado de los	Ve	locidad (km/	/h)
pavimento	neumáticos	30	60	90
Seco	Bueno	aprovima	domento 1	0,95
3eco	Desgastado	аргохіпта	damente 1 -	0,90
Ligeramente	Bueno	0,60	0,40	0,30
mojado	Desgastado	0,35	0,20	0,10
Muu maiada	Bueno	0,55	0,5	0,12
Muy mojado	Desgastado	0,30	0,12	0,05

máticos buenos y pavimento muy mojado es del mismo orden de magnitud que la correspondiente a neumáticos desgastados y pavimento ligeramente mojado.

Para esas mismas velocidades, los valores de f considerados admisibles por la Norma 3.1-IC "Trazado" de 1999 se ajustan mejor a un pavimento ligeramente mojado y neumáticos desgastados.

La resistencia al deslizamiento con neumáticos desgastados y pavimento muy mojado es bastante inferior. Se preconizaron en este estudio los siguientes modelos para un pavimento ligeramente mojado en buen estado, y neumáticos en buen estado:

 Para la resistencia al deslizamiento longitudinal:

$$\mu_1 = 0.86 - \frac{V}{500}$$

 Para la resistencia al deslizamiento transversal:

$$\log \mu_t = -\frac{V}{200} - 0.07$$

3. Visibilidad de parada: rozamiento longitudinal admisible

3.1. Enfoque

Las normas de trazado suelen recoger que, en cualquier punto de cualquier carril de una carretera, la visibilidad disponible (oferta) no debe ser inferior a la distancia necesaria (demanda) para detenerse ante la percepción de la presencia de un obstáculo en la calzada, antes de llegar a chocar con él. Esto equivale a afirmar que las limitaciones de la visibilidad son una importante fuente de accidentes.

Lo anterior parece perfectamente razonable; pero para edificar esta construcción lógica no ha sido necesario saber cómo dependen de las características geométricas del trazado la frecuencia y la gravedad de los accidentes: lo único que se ha necesitado es imaginar la situación que puede conducir a una colisión con dicho obstáculo. Puede parecer sorprendente que, para pergeñar un diseño impulsado por la preocupación por la seguridad, no se haya necesitado saber si la frecuencia de los choques con obstáculos en la calzada depende de la visibilidad disponible, ni saber cómo es esa dependencia: el procedimiento se basa en una conjetura creíble.

El infierno de la seguridad de la circulación está empedrado con las conjeturas creíbles que no resultaron acertadas. Las conjeturas, por muy creíbles que sean, normalmente no son aceptables cuando se trata de asuntos que afectan a la salud. Así, por ejemplo, un medicamento no es aprobado mientras no hayan sido cuidadosamente comprobados sus efectos y sus virtudes curativas, así como sus eventuales efectos secundarios dañinos. Sin embargo, algunos aspectos del trazado de las carreteras no se basan en datos experimentales, sino en conjeturas creíbles: por lo que se corta el vínculo entre la realidad y la seguridad de la circulación (medida por la frecuencia y la gravedad de los accidentes). El trazado se convierte en un rito, basado en una idea preconcebida de lo que causa los "fallos" (o sea, los siniestros) que puede haber.

Sobre esto se puede contar una anécdota (3). Uno de los parámetros que influyen en la visibilidad disponible es la altura

Algunos equipos de medición del deslizamiento

del obstáculo que el conductor debe ver a tiempo. Ya en 1940 las normas norteamericanas fijaron dicha altura en 10 cm. Quienes redactaron esas normas no pensaban en ningún obstáculo concreto2: dijeron que "... al aumentar la altura del objeto de 0 a 10 cm, la longitud del acuerdo vertical necesario disminuye en un 40%... (y) el empleo de un obstáculo más alto... (sólo) produciría un pequeño ahorro..."3. El ahorro al que se referían era en el volumen de las explanaciones, al no tener que profundizar más en el terreno por donde pasa la carretera. De esta manera, se seleccionó un obstáculo de 10 cm no porque un obstáculo más bajo no amenazase a la seguridad, sino porque elegir uno más alto no habría ahorrado mucho en el coste de la construcción. Dado que en aquella época nadie sabía cuántos choques se debían a la presencia de obstáculos en la carretera, ni de qué tipo de obstáculos se trataba, ni cuántos de los choques no habrían tenido lugar si el acuerdo hubiera sido más largo, la Comisión de normas hizo lo que era razonable: se basó en lo que se sabía, es decir, en el coste de la construcción.

Durante veinte años todo el mundo diseñó las carreteras con arduos cálculos para asegurar que se viera un obstáculo de 10 cm con tiempo para detenerse. Alrededor de 1961 se observó que en los coches más nuevos la altura media de los ojos del conductor era mucho menor que 10 ó 20 años antes: no podrían ver, en realidad, un obstáculo de 10 cm a la distancia prescrita.

No es que hubiera un aumento apreciable de los choques con obstáculos en la carretera: no hay rastro alguno de que este asunto fuera investigado. Lo que debió parecer desconcertante fue que los acuerdos verticales convexos, que antes se atenían a las normas (y por lo tanto se suponían seguros), ahora parecían estar fuera de

La solución de esta situación no fue difícil. Dado que el obstáculo de 10 cm ni correspondía a un objeto concreto, ni había sido seleccionado basándose en una relación objetiva con la seguridad, la Comisión de normas no tuvo escrúpulos en afirmar que "... la pérdida de visibilidad derivada de una menor altura de los ojos (del conductor) se puede compensar... suponiendo un obstáculo mayor de 10 cm...". De hecho, en el libro verde de la AASHO de 1965 se fijaron como norma unos obstáculos de 15 cm.

Los miembros de la Comisión tuvieron que afrontar el problema surrealista de fijar la altura de un obstáculo imaginario, de naturaleza no concretada, con el que los conductores chocarían con una frecuencia desconocida. Sin embargo, había que fijar un valor, porque se necesitaba para llevar a cabo una comprobación que formaba parte del rito del trazado. Bajo la simpática cubierta de una anécdota, asoman los rasgos de un problema grave y omnipresente: hay mucha preocupación por el rigor formal,

² Aunque se rumorea que algunos se refieren a este criterio como el del perro muerto...

Tabla 3.1-A. Altura (del obstáculo pe	ercibido (cm)		
País		Altura del objeto		Altura del
Fais	Parada	Adelantamiento	Encuentro	observador
Alemania	30 – 45	100		100
Australia	20			
Austria	0 – 19	100	100	100
Dinamarca	15	100		100
EE.UU.	60¹			
ESPAÑA	20	110		110
Finlandia	0 – 20	100		110
Francia	35 ²	100		100
Islandia	20	135		110
Irlanda	15	115		105
Italia	10	110		110
Países Bajos	20			110
Portugal	10	120		120
Reino Unido	26 - 200	105		105
Suecia	20		135	110
Suiza	15	100		100

¹Se considera que es representativo de un objeto que significa peligro para los conductores, y que puede ser

² Pilotos traseros de un vehículo. Donde sean frecuentes las caídas de piedras se puede pensar en reducir la altura a 15 cm.

pero hay menos pruebas de inquietud por el fondo de la cuestión.

Hoy sabemos que sólo el 0,07% de los choques registrados se relacionan con objetos de menos de 15 cm de altura (4). También sabemos que no se ha hallado ninguna correlación entre el riesgo de chocar con un objeto fijo pequeño en la calzada, y la visibilidad disponible. Al contrario (5), se sabe que "... la siniestralidad en las carreteras de dos carriles con visibilidad limitada... es semejante a la siniestralidad en las demás carreteras rústicas...". Así que la hipótesis invocada en los albores de la historia del trazado de las carreteras, que permitía el planteamiento de un diseño basado en evitar el choque con perros muertos en el pavimento, parece que tiene poco que ver con la verdadera seguridad de la circulación. Sin embargo, hasta hoy se mantiene el mismo paradigma, y se emplean para diseñar los acuerdos verticales convexos las mismas arduas pero ilusorias construcciones. Sólo cambian el tamaño del perro y el de los demás parámetros...

En la tabla 3.1-A se indica la altura de los obstáculos que se deben percibir y la del ojo del observador según las distintas normas, tomadas de un estudio de O'Cinnéide y otros (6), actualizado por este Análisis.

La percepción de objetos de pequeña altura puede dar lugar a acuerdos verticales convexos más largos, sin beneficios documentados de seguridad (7), incrementando sustancialmente los costes de construcción debidos a la excavación adicional. También es dudoso que puedan incrementar la capacidad del conductor para percibir situaciones que comprendan riesgo de colisiones, por recomendar visibilidades de parada más allá de sus capacidades para detectar objetos pequeños.

En efecto, algunas normas como las australianas y las suecas introducen un requerimiento adicional relacionado con la capacidad visual de los conductores. Éstos no pueden percibir un objeto cuya imagen subtienda un arco menor de 1' en el ojo del observador⁴. Si se desea que en estas condiciones resulten visibles los 10 cm superiores de un objeto a una distancia de 65 m, o su totalidad a una distancia⁵ de 130 m, la aplicación de las fórmulas de la distancia de parada conduce a la conclusión de que una velocidad superior a 90 km/h de día, o a 70 km/h de noche, rebasa la capacidad visual de los conductores. Las normas suecas piden que resulten visibles el centímetro superior de un objeto de 20 cm a una distancia de 50 m, o los 9 cm superiores a una distancia5 de 300 m.

3.2. Distancia de parada

La definición de la distancia de parada se apoya, en todas las normas de trazado, sobre el siguiente modelo físico-matemático de la maniobra:

- El vehículo circula a una velocidad V (km/h). Esta velocidad debiera ser el fractil 85 de la distribución de las velocidades operativas; pero se suele representar por la velocidad específica del elemento del trazado por el que se esté circulando6.
- Percibida la necesidad de detenerse, durante un tiempo de percepción y reacción t (s) el vehículo sigue avanzando a la misma velocidad, y recorre una distancia (en m)

$$\frac{\mathbf{V}}{3.6} \cdot \mathbf{t}_{p}$$

Transcurrido ese tiempo, el conductor deja de acelerar (ya no se compensa la acción de una inclinación longitudinal7 i [%] de la rasante), y aplica los frenos; se moviliza un rozamiento longitudinal f, entre los neumáticos y el pavimento. El vehículo disminuye su velocidad hasta que se detiene.

La ecuación diferencial general que gobierna este movimiento decelerado en una rasante inclinada es

$$\begin{split} &\frac{\text{d}\!\left(\frac{\textbf{V}}{3,6}\right)}{\text{dt}} \!=\! \frac{\textbf{V}}{3,6} \!\cdot\! \frac{\text{d}\!\left(\frac{\textbf{V}}{3,6}\right)}{\text{ds}} \!=\! \frac{1}{2 \cdot 3,6^2} \!\cdot\! \frac{\text{d}\!\left(\textbf{V}^2\right)}{\text{ds}} \!=\! \\ &- \! g \!\cdot\! \left(\mathbf{f}_1 \!+\! \frac{\textbf{i}}{100} \!+\! \frac{\textbf{r}}{\textbf{M}} \!+\! \frac{\gamma}{2} \!\cdot\! \mathbf{C}_x \cdot\! \mathbf{S}_x \cdot\! \left(\frac{\textbf{V}}{3,6}\right)^2\right) \end{split}$$

siendo s (m) la distancia recorrida.

> g (9,81 m/s²) la aceleración de la gravedad.

r (N) la resistencia del vehículo a la rodadura.

M (N) la masa del vehículo.

 γ (1,15) la densidad del aire.

⁴ Un arco de 5' es más típico de las condiciones de contraste e iluminación presentes en la mayoría de las carreteras.

⁵ Un objeto de esas dimensiones no será percibido a distancias superiores a 130 m ni siquiera si la visibilidad es suficiente.

⁶ Parece fruto de un error la referencia a la velocidad de proyecto (que puede haber sido provocada por un elemento bastante lejano dentro del mismo tramo) que hace el apartado 3.2.1 de la Norma 3.1-IC

⁷ Positiva subiendo (rampa).

Defe					Veloci	dad inicial	(km/h)				
País	40	50	60	70	80	90	100	110	120	130	140
Alemania ¹	0,458	0,408	0,362	0,321	0,285	0,254	0,228	0,207	0,190	0,178	0,171
Australia		0,520							0,350		
Austria ¹	0,393	0,349	0,308	0,272	0,240	0,212	0,189	0,170	0,155	0,145	0.138
EE.UU.						0,352	2				
ESPAÑA	0,432	0,411	0,390	0,369	0,348	0,334	0,320	0,306	0,291	0,277	0,263
Francia (autopistas)		0,46		0,44		0,40		0,36		0,32	
Francia (resto)	0,34	0,33	0,32	0,30							
Grecia ¹	0,420	0,385	0,353	0,325	0,299	0,276	0,256	0,239	0,225	0,215	0,207
Irlanda	0,36		3,34		0,32		0,30		0,28		
Italia (autopistas)					0,44		0,40		0,36		0,34
Italia (resto)	0,43		0,35		0,30		0,25		0,21		
Países Bajos (autopistas)		0,482		0,435		0,380			0,320		
Países Bajos (resto)			0,40		0,34		0,28				
Portugal											
Reino Unido						0,250	3				
Suecia	0,48		0,44		0,41		0,37		0,34		

¹ Los valores no son medidos en función de la velocidad inicial, sino que corresponden a cada velocidad durante la frenada.

C el coeficiente de penetra ción aerodinámica del vehículo.

S_v (m²) la superficie frontal del vehículo.

Obsérvese que, en su forma más general, f, puede ser función de V, e i función de s.

En la tabla 3.2-A se indican los rozamientos medios admitidos por las distintas normas para diversas velocidades iniciales. tomadas del estudio de O'Cinnéide y otros (6), actualizado. Las diferencias resultan evidentes:

- Dos países, EE.UU. y Reino Unido, preconizan sólo un valor del rozamiento, independiente de la velocidad.
- Tres países, Alemania, Austria y Grecia, no se basan en la velocidad inicial y luego aplican un rozamiento medio, sino que asignan un rozamiento a cada velocidad mediante una ecuación de segundo grado, y luego integran una ecuación diferencial más complicada.
- Entre los demás países, para una misma velocidad inicial hay rozamientos muy diversos.

En la tabla 3.2-B de la página siguiente se indican las distancias de parada en una rasante horizontal resultantes de las distintas normas para diversas velocidades iniciales, tomadas del estudio de O'Cinnéide y otros (6), actualizado.

3.3. Normativa comparada

3.3.1. Alemania

Se emplean los siguientes parámetros:

- Velocidad inicial: el percentil 85 de la velocidad operativa estimada.
- Tiempo de reacción: 2,0 s para carreteras interurbanas; 1,5 s para urbanas.
- Rozamiento longitudinal admisible: variable en cada punto de la frenada según la velocidad en él (percentil 95 de la distribución medida en los pavimentos):

$$\mathbf{f} = 0.708 - 0.721 \cdot \frac{\mathbf{V}}{100} + 0.241 \cdot \left(\frac{\mathbf{V}}{100}\right)^2$$

Resistencia aerodinámica: coeficiente de penetración aerodinámica 0,35; superficie frontal 2,08 m²; masa del vehículo 1 304 kg.

Este planteamiento requiere una complicada integración de la ecuación diferencial del modelo de la distancia de parada.

3.3.2. Australia

Se emplean los siguientes parámetros:

Velocidad inicial: la velocidad operativa estimada. Como ésta suele ser mayor que la empleada en el diseño, especialmente en carreteras en la que ésta es inferior a 100 km/h, la normativa introduce así un margen de seguridad para tener en cuenta la presencia de conductores más rápidos.

- Tiempo de reacción: varía entre 2,5 s para velocidades superiores a 100 km/h, 2,0 s para carreteras con velocidades inferiores, y a un 1,5 s para carreteras situadas en terrenos de relieve difícil y situaciones restringidas.
- Resistencias a la rodadura y aerodinámica: no se consideran.

3.3.3. Austria

Se emplean los siguientes parámetros:

- Velocidad inicial: la velocidad operativa estimada: 100 a 140 km/h para carreteras con calzadas separadas, y 100 km/h para carreteras convencionales interurbanas de calzada única.
- Tiempo de reacción: 2,0 s.
- Rozamiento longitudinal admisible: variable en cada punto de la frenada según la velocidad en él:

$$\mathbf{f} = 0.615 - 0.640 \cdot \frac{\mathbf{V}}{100} + 0.214 \cdot \left(\frac{\mathbf{V}}{100}\right)^2$$

Corresponde a una deceleración media de 3,4 m/s².
 Por razones de comodidad, aunque se admite hasta 0,375 sin pérdida de control sobre pavimento mojado.

Rutas Técnica

Velocidad													
Inicial (km/h)	30	40	50	60	70	80	85	90	100	110	120	130	140
Alemania				118	150	180		230	230		330		
Austria		35	50	70	90	120			185		275		380
Dinamarca				75		120			180		255		
ESPAÑA		37	52	70	91	117		145	179	217	261	312	371
Finlandia			60	75		120			180		250		
Francia		40		65		105			160				
Grecia	17	31	48	69	94	125		155	190	280	280		
Irlanda		40		80		130			190		270		
Islandia			50	70		115		140	170				
Italia		28		58		103			160		229		313
Noruega				64	87	119		147	175				
Países Bajos	30¹	35¹	40	65¹	80	105¹		135	160¹		260		
Portugal		40	60	80	100	120			180		250		
Reino Unido			50	70	95		125		165		225		
Suecia	35		70				120		165	195			
Suiza				75		125			195		280	340	
TEM						100			150		225		325

¹ No en autopista

Resistencia aerodinámica: coeficiente de penetración aerodinámica 0,46; superficie frontal 2,21 m²; masa del vehículo 1 175 kg.

Este planteamiento requiere una integración más complicada de la ecuación diferencial del modelo.

3.3.4. España

Se emplean los siguientes parámetros:

- Velocidad inicial: la velocidad de proyecto, lo cual parece fruto de un error, pues no está tan relacionada con la velocidad operativa estimada como la velocidad específica del elemento del trazado que se considera.
- Tiempo de reacción: 2 s.

3.3.5. EE.UU.

Se emplean los siguientes parámetros:

- Velocidad inicial: una velocidad de diseño, no tan relacionada con la velocidad operativa estimada como en otros países.
- Tiempo de reacción: 2,5 s.

La integración de la ecuación diferencial, en una rasante de inclinación constante, resulta en la misma fórmula empleada en la Norma 3.1-IC.

3.3.6. Francia

Aunque no esté documentado directamente (8), en Francia no se cree que la visibilidad de parada sea muy importante

para el diseño de carreteras, pues estudios realizados sugieren que los choques con objetos fijos inertes no son corrientes: los más comunes son los choques con vehículos detenidos y, con mayor frecuencia, los atropellos de peatones⁸ que tienen lugar típicamente de noche cuando la visibilidad de parada no es el factor determinante.

3.3.7. Grecia

Se emplean los siguientes parámetros:

- Velocidad inicial: el percentil 85 de la velocidad operativa estimada.
- Tiempo de reacción: 2,0 s para carreteras interurbanas; 1,5 s para urbanas.
- Rozamiento longitudinal: variable en cada punto de la frenada según la velocidad en él (percentil 95 de la distribución medida en los pavimentos):

$$\mathbf{f} = 0.590 - 0.485 \cdot \frac{\mathbf{V}}{100} + 0.151 \cdot \left(\frac{\mathbf{V}}{100}\right)^2$$

Resistencia aerodinámica: coeficiente de penetración aerodinámica 0,35; superficie frontal 2,08 m²; masa del vehículo 1 304 kg.

Este planteamiento requiere una integración más complicada de la ecuación diferencial del modelo.

3.3.8. Italia

Se emplean los siguientes parámetros:

- Velocidad inicial: el percentil 85 de la velocidad operativa estimada.
- Tiempo de reacción: dado por la expresión

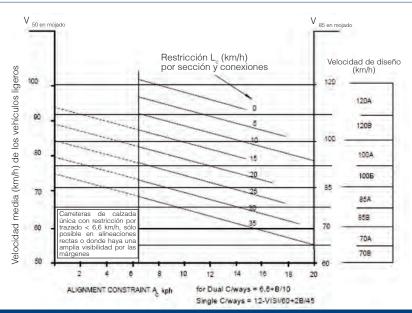
$$t = 2.8 - \frac{V}{100}$$

- Rozamiento longitudinal admisible: mayor para las autopistas que para el resto, alegando que en las primeras los usuarios movilizan un mayor rozamiento debido a la calidad del trazado y del pavimento.
- Resistencia aerodinámica: coeficiente de penetración aerodinámica 0,35; superficie frontal 2,1 m²; masa del vehículo 1 250 kg.

3.3.9. Reino Unido

Se emplean los siguientes parámetros:

- Velocidad inicial: la velocidad de diseño, relacionada con las velocidades operativas esperadas; intervienen ciertas restricciones.
- Tiempo de reacción: 2,0 s.
- Resistencias a la rodadura y aerodinámica: no se consideran.


Hay un detallado sistema de mitigaciones (*relaxations*) de las características estándar, el cual presenta ciertas particularidades adicionales para el caso de la visibilidad de parada:

⁸ Los cuales representan un 5% de los accidentes interurbanos, y un 8% de los mortales.

- En autopistas, se puede descender hasta 1 escalón en la secuencia de gamas de velocidades de diseño, si ésta está en la franja A (alta), y hasta 2 si está en la franja B (baja).
- En carreteras convencionales, se pueden descender hasta 2 escalones en la secuencia de gamas de velocidades de diseño, si ésta está en la franja A (alta), y hasta 3 si está en la franja B (baja).
- En las autopistas y carreteras convencionales a las que corresponda la franja
 A (alta) de velocidades de diseño:
 - Donde la visibilidad disponible sólo esté obstruida en planta por obstáculos puntuales como pilas o estribos de pasos superiores, báculos de alumbrado, pórticos de señalización y carteles de orientación⁹, la máxima mitigación admisible se alarga 1 escalón.
 - Las barreras de seguridad o pretiles largos situados en curva pueden obstruir la visibilidad de parada en planta referida a un obstáculo de poca altura, aun manteniéndola para una altura¹⁰ de algo más de 1 m. En estos casos, la máxima mitigación admisible también se alarga 1 escalón.
- Con calzadas separadas, al final de pendientes de longitud superior a 1,5 km e inclinación superior al 3%, la máxima mitigación admisible se acorta 1 escalón.
- Con calzada única, al final de rampas de longitud superior a 1,5 km e inclinación superior al 4%, la máxima mitigación admisible se alarga 1 escalón.
- En carreteras de calzada única con dos carriles, inmediatamente después de un tramo de adelantamiento permitido¹¹ la máxima mitigación admisible se acorta 1 escalón.
- Con velocidades de diseño de 70 km/h o menos, si la carretera tiene alumbrado la máxima mitigación admisible se alarga 1 escalón.

3.3.10. Suecia

Tampoco en Suecia (9) se cree que la visibilidad de parada sea muy importante para el diseño de carreteras, pues les resulta difícil cuantificar los beneficios derivados de ella en su esquema de costes y beneficios. Sí se ha comprobado un aumento de

Ábaco de las normas británicas para el diseño de carreteras interurbanas de nuevo trazado

la siniestralidad donde es mayor la proporción de su longitud con una visibilidad disponible inferior a 300 m.

4. Curvas en planta: rozamiento transversal

4.1. Enfoque

4.1.1. Paradigma básico

El paradigma que habitualmente guía las normas de trazado, en relación con la seguridad, es el siguiente:

- 1. Suponer cómo tiene lugar el "fallo" que da origen a un siniestro.
- Utilizar las ciencias físicas y matemáticas para representar la situación de fallo.
- Elegir unas "cargas de proyecto" y unos valores "prudentes" para los parámetros.
- 4. Calcular los valores del diseño.

A primera vista, el modo supuesto de "fallo" en el que se basa el diseño de una curva en planta es evidentemente lógico. Para moverse en una curva, cualquier objeto (en este caso, un vehículo) debe ser sometido a una suficiente fuerza exterior centrípeta. Si la fuerza disponible no es suficiente, el vehículo será arrastrado hacia el exterior de la curva y se saldrá de la plataforma. Cuanto más velozmente se desplace el vehículo, mayor será la fuerza necesaria. Al contrario, cuanto mayor sea el radio de curvatura, menor será esa fuerza que es proporcionada en parte por el rozamiento entre los neumáticos y el

pavimento, y en parte por el peralte de la plataforma. Para este modo supuesto del fallo (deslizamiento hacia el exterior de la curva debido a una insuficiente fuerza centrípeta), las leyes de la Física especifican la relación entre la velocidad $\bf V$ (km/h), el radio $\bf R$ (m), el peralte $\bf p$ (%) y el rozamiento transversal movilizado $\bf f_t$, para un vehículo que se mueve como un punto que tiene masa.

$$\frac{\mathbf{V}^2}{127 \cdot \mathbf{R}} = \frac{\mathbf{p}}{100} + \mathbf{f}_{\mathbf{t}}$$

La velocidad es la "carga de proyecto" del paradigma (demanda); el radio y el peralte caracterizan la curva (oferta).

Dado que el razonamiento anterior parece impecable y se utilizan unos valores prudentes para los parámetros, los "fallos" deberían ser escasos. Si esto fuera así, se podría esperar con fundamento que la normativa ha tenido en cuenta la curvatura de una manera adecuada y que, por lo tanto, su presencia no debería aumentar significativamente la probabilidad de un siniestro. De ello se sigue que la siniestralidad de las curvas no debería ser muy distinta de la de las alineaciones rectas. Pero esto es, en realidad, falso (10). Una gran cantidad de datos muestran que en las curvas los accidentes son mucho más frecuentes que en las rectas, quizás del orden del triple como media. Además, numerosos estudios

⁹ Estos últimos, situados en las márgenes o en la mediana.

OCorrespondiente al techo de un coche.

¹¹ Bien porque se disponga de visibilidad suficiente, bien porque se hayan establecido carriles adicionales para facilitar el adelantamiento.

D-/-		Velocidad de diseño (km/h)											
País	40	50	60	70	80	90	100	110	120	130	140		
Alemania			,			7 - 8							
Austria	7,0	6,75	6,6	6,5	6,4		6,2		6,2		6,0		
Dinamarca					6								
ESPAÑA (Grupo 1)							8,00			6,97	5,49		
ESPAÑA (Grupo 2)			7,0	00			5,85	4,67					
Finlandia		7		6			5		4				
Francia		7											
Grecia		6 - 10											
Irlanda					7								
Islandia					7								
Italia	3,5	5				7							
Noruega					8								
Países Bajos					5								
Portugal			8 6										
Reino Unido		7											
Suecia			5,5										
Suiza			7										
TEM								7					

muestran que, cuanto menor es el radio, mayor es la siniestralidad. De hecho, el que se denomina "mínimo radio seguro" es el asociado a una mayor siniestralidad...

La causa inmediata de esta aparente contradicción es que para desarrollar el diseño de las curvas en planta no se ha utilizado información empírica sobre la siniestralidad. Tampoco parece que se haya tenido en cuenta en qué medida la frecuencia o la gravedad de los accidentes dependen del radio de la curva o de su peralte. El diseño para la seguridad sin utilizar el conocimiento empírico existente acerca de ésta ha sido facilitado por la aparente legitimidad del paradigma de diseño mencionado.

Ante todo, se ha admitido que se produce el fallo cuando no se moviliza un rozamiento transversal suficiente para mantener al vehículo en una trayectoria curva a una cierta velocidad. En este esquema mecanicista no parece haber sitio para el conductor, que es quien tiene en la realidad que inscribir al vehículo en la trayectoria. De hecho, una gran proporción de los accidentes en las curvas se han producido porque los conductores no las han previsto debidamente y no ciñeron a ellas su trayectoria. Una reacción tardía a menudo termina en un exceso de acción correctora y en una pérdida del control.

En esas circunstancias, la disponibilidad de un rozamiento adecuado tiene poca influencia. Si fuera cierta la concepción mecanicista del modo principal de "fallo", los vehículos se saldrían de la plataforma sólo por su lado exterior. Sin embargo, los datos muestran que entre el 11 y el 56% de los vehículos se salen por el otro lado (11).

- En segundo lugar, el papel de la "carga de proyecto" en el paradigma general es desempeñado en este caso por una "velocidad de diseño". Normalmente, las cargas de proyecto se eligen de manera que la probabilidad de que sean rebasadas sea suficientemente pequeña; sólo así puede ser el fallo adecuadamente escaso. Pero la velocidad empleada en muchas de las normas de trazado a menudo no es tan poco frecuente.
- Además, no sólo la velocidad influye en el comportamiento de un vehículo en curva: en ciertos entornos las correcciones efectuadas a la curvatura por los conductores provocan excesos localizados en las aceleraciones centrífugas (12).

4.1.2. El peralte

El peralte que se puede disponer en una curva en planta tiene límites superiores prácticos, que se relacionan con consideraciones sobre el clima, la constructibilidad, el uso del suelo adyacente, y la presencia de vehículos lentos:

- Donde pueda haber la nieve o hielo, el peralte no debe superar el valor para el cual los vehículos detenidos o lentos pudieran deslizarse hacia el centro de la curva.
- Cuando se circula lentamente por una curva con peralte elevado, se desarrollan fuerzas laterales negativas; y el vehículo es mantenido en la travectoria curva sólo si el conductor fuerza el volante contra la dirección de la curva. Lo anterior parece antinatural, y puede explicar la dificultad de conducir por vías donde el peralte es superior al necesario para viajar a velocidades normales. Por lo tanto, los peraltes altos son indeseables en vías de tráfico intenso, como en zonas urbanas y periurbanas, donde hay numerosas ocasiones para que los vehículos reduzcan considerablemente las velocidades.
- Algunos vehículos tienen su centro de gravedad alto, y otros tienen suspensiones muy blandas. Cuando estos vehículos circulan lentamente por peraltes fuertes, una elevada proporción de su peso es soportada por los neumáticos interiores. Si esta condición se vuelve extrema, el vehículo puede volcar.

Dafa.		Velocidad de diseño (km/h)										
País	40	50	60	70	80	90	100	110	120	130	140	
Alemania						1 750	2 500		5 000			
Austria					2 000				3 000		4 000	
Dinamarca			1 100		2 000				7 000			
ESPAÑA		5 000 para Grupo 1; 3 500 para Grupo 2										
Finlandia		1 500	2 000		3 500							
Francia (autopistas)								650		1 000		
Francia (resto)			600		900		1 300					
Irlanda	400		800		1 500		2 300		3 300			
Italia			204		708		2 187		3 334		4 820	
Países Bajos (mínimo)		130	190	300	420	600	780		1 500			
Países Bajos (deseable)		300	900	800	1 700	2 000	2 500		4 000			
Portugal					5 000							
Reino Unido		510	720	1 020	1 440		2 040		2 880			
Suiza									7 500			
TEM					1 300		2 000		3 000		4 500	

El valor más alto del peralte para vías es del 12%, aunque por encima del 8% sólo se usan en zonas sin nieve ni hielo. Naturalmente, estos valores máximos del peralte son los que corresponden a los radios más pequeños o estrictos.

En la *tabla 4.1-A* se indican los peraltes máximos establecidos por las distintas normas para diversas velocidades de diseño, tomados del estudio de O'Cinnéide y otros (3), actualizado por este Análisis.

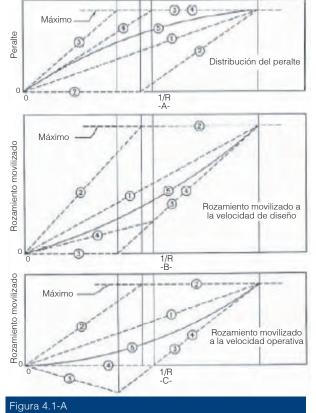
Por otro lado, las curvas de radio muy grande no necesitan peralte:

- Los vehículos que entran en ellas hacia la derecha tienen algún peralte proporcionado por el bombeo normal.
- Los vehículos que entran en una curva hacia la izquierda tienen un peralte adverso o negativo, resultante del bombeo; pero el rozamiento transversal necesario para compensar la aceleración lateral y contrarrestar el peralte negativo es pequeña.

Así, es importante establecer un criterio para fijar el radio mínimo a partir del cual es admisible una sección transversal igual a la empleada en las alineaciones rectas.

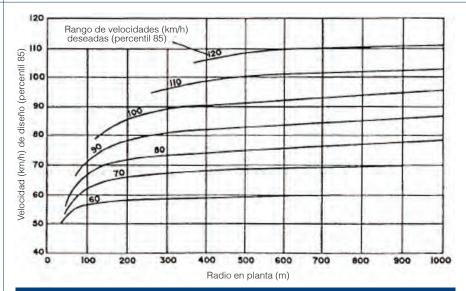
En la *tabla 4.1-B* se indican los radios a partir de los cuales se puede adoptar el mismo bombeo que en una alineación recta, establecidos por las distintas normas para diversas velocidades de diseño, tomados del estudio de O'Cinnéide y otros (3), actualizado por este análisis.

Entre los radios estrictos y los muy


grandes ha de haber una relación entre el peralte máximo y el bombeo, que resulte satisfactoria para radios intermedios. La **AASHTO**¹² ha estudiado cinco tipos de ley radio – peralte (figura 4.1-A):

 El peralte y, por lo tanto, el rozamiento transversal movilizado son directamente proporcionales a la curvatura 1/R. La ventaja de este tipo de ley es su simplicidad; pero se requiere que la velocidad

del vehículo sea la misma velocidad tanto en las alineaciones rectas como en curvas de distinto radio. Muchos conductores circulan más rápido en rectas y curvas amplias que en curvas cerradas: lo cual requiere mayores valores del peralte para las curvas de radio intermedio.


2. El vehículo tiene toda la aceleración lateral compensada por el rozamiento transversal movilizado hasta la que requiere $\mathbf{f}_{t,máx}$. Para curvas más cerradas, \mathbf{f}_{t} permanece igual a $\mathbf{f}_{t,máx}$, y luego el peralte compensa la

aceleración lateral restante hasta que \boldsymbol{e} alcanza $\boldsymbol{p}_{\text{máx}}$. En este método, primero $\boldsymbol{f}_{\text{t}}$ y luego \boldsymbol{p} aumentan linealmente con la curvatura 1/ \boldsymbol{R} . En este método, el peralte se introduce sólo después de agotar el rozamiento transversal. Dado que este método depende completamente de la disponibilidad de rozamiento transversal, generalmente su uso está limitado a vías de baja-velocidad.

¹² Green Book, 2004.

Rutas Técnica

La velocidad deseada como indicador del trazado en la Guía australiana de diseño

- 3. El vehículo tiene toda la aceleración lateral compensada por el peralte hasta la que requiera $\mathbf{p}_{\text{máx}}$. Para curvas más cerradas, \mathbf{p} permanece en $\mathbf{p}_{\text{máx}}$ y luego el rozamiento transversal movilizado compensa la aceleración lateral restante hasta que f, alcanza f, máx. En este método, primero p y luego f, aumentan linealmente con la curvatura 1/R. En curvas amplias, el rozamiento transversal movilizado es muy pequeño o incluso negativo para la gama de radios mayores. Estas diferencias en el rozamiento movilizado no parecen lógicas.
- 4. Este método es igual al anterior, excepto que se basa en una velocidad algo menor; aunque presenta sus mismas desventajas. Sin embargo, para acomodar el sobreviraje¹³ que es probable en curvas abiertas a intermedias, es deseable que el peralte se aproxime al obtenido por este método: hay muy poco riesgo de que el conductor pierda el control del vehículo, porque el peralte compensa casi toda la aceleración lateral a una velocidad media, y se dispone de una buena reserva de rozamiento transversal movilizable para velocidades mayores.
- 5. El peralte y el rozamiento transversal movilizado están en una relación no lineal con la curvatura 1/R, con valores entre los de los métodos 1 y 3. Representa una distribución del peralte y, por

consiguiente, del rozamiento transversal movilizado, que razonablemente retiene las ventajas de los métodos 1 y 4. La curva tiene una forma parabólica

4.1.3. Rozamiento transversal admisible

Se ha demostrado experimentalmente (13) que la velocidad a la que se puede abordar una curva está condicionada por el conjunto conductor + vehículo con los siquientes niveles de rozamiento transversal movilizado (14):

- Inferior a 0,2: todos los vehículos pueden soportarlo sin pérdida de estabilidad, v todos los conductores son capaces de abordar la curva.
- Entre 0,2 v 0,4: todos los vehículos ligeros y la mayoría de los conductores medios lo soportan.
- Entre 0,4 y 0,6: los vehículos modernos en buenas condiciones no pierden la estabilidad, pero los conductores tiene problemas para controlarlos.
- Entre 0,6 y 0,8: difícil de soportar para la mayoría de los vehículos y conductores.

El límite a partir del cual pueden aparecer problemas se fija en 0,3: lo cual resulta coherente con estudios (15) que establecían un intervalo de rozamientos transversales admisibles entre 0,2 y 0,4 g en buenas condiciones del pavimento y con independencia de la velocidad de circulación. En la misma línea, la Norma 8.1-IC "Señalización vertical" indica que el rozamiento transversal movilizado no debe exceder de 0,25 si se quiere evitar el quiebro de los vehículos articulados.

Un trabaio canadiense (16) apunta al hecho experimental de que los conductores, en curvas cerradas, eligen la velocidad para alcanzar un cierto valor confortable del rozamiento transversal movilizado, valor que cifran en 0,35 - 0,4. En curvas de amplio radio ya no se considera esta variable, sino que se siguen los mismos criterios de conducción cómoda que en las alineaciones rectas.

Hay otros factores que limitan la elección de un elevado rozamiento transversal movilizado por parte de un conductor:

- Los giros resultan más perceptibles: el ángulo de giro del volante crece.
- Es necesario un mayor esfuerzo en el volante para evitar apartamientos involuntarios de la trayectoria prevista.
- El cono de visión se estrecha, junto con un creciente sentido de concentración e intensidad.

Los valores admisibles del rozamiento transversal movilizado usados en el diseño deben ser conservadores para pavimentos secos, y proporcionar un amplio margen de seguridad frente al deslizamiento en pavimentos mojados o cubiertos de nieve o hielo, causado por demandas adicionales de rozamiento resultantes de las maniobras de conducción de corta duración: pequeños cambios en la trayectoria dentro del carril propio, cambios repentinos de carril, incluso un ligero frenado. En estas maniobras la incomodidad puede no ser percibida a tiempo.

Es interesante destacar que el valor admisible para el rozamiento transversal movilizado en una curva no es el que se puede encontrar en "... pavimentos que están pulidos o presentan exudaciones... porque esas situaciones se pueden evitar. y el trazado se debe basar en unas condiciones superficiales aceptables..." 14. Más bien se basa en el comportamiento observado en los conductores, y se deduce de la cantidad de rozamiento transversal que los conductores aceptan movilizar sin disminuir su velocidad al circular por curvas a lo que ellos piensan que es una velocidad segura. Esos rozamientos son admisibles porque todavía se cree que "... proporcionan un amplio margen de seguridad frente al deslizamiento..." 14.

Los valores admisibles del rozamiento transversal, o (lo que es lo mismo) de la

¹³ Se dice que un vehículo es sobrevirador si, al tomar una curva, tiende a girar más que el trazado: su trasera se dirige hacia afuera.

14 Green Book, 2004.

Velocidad específica													
(km/h)	30	40	50	60	70	80	85	90	100	110	120	130	140
AGR¹				120		240			450		650		1 000
Austria		45	80	125	180	250			450		700		1 000
Bélgica			130					350			750		
Dinamarca		50		130		265			492		872		
España (Grupo 1)						250	300	400	450	550	700	900	1 250
España (Grupo 2)		80	85	130	190	265		350	485	670			
Finlandia			110	170		350			650		1 100		
Francia				120		240			425	400²		600¹	
Grecia	30	50	75		140	200			350		500		
Islandia			80	125		250		350	450				
Irlanda		50		130		240			400		600		
Italia		51	77	118	178	252		339	437		667		964
Noruega				110	160	230		320	430				
Países Bajos			85	130³	185	260 ²		350	450 ²		750		
Portugal		40	80	120	170	230			450		700		
Reino Unido			127	180	255		360		510		720		
Suecia			160				350		500	625			
Suiza				120		240			420		650	780	
TEM						240			450		650		1 000

¹ Acuerdo europeo del 15 de noviembre 1975 sobre grandes vías de tráfico internacional.

aceleración transversal no compensada por el peralte, se empezaron a determinar en los años 40 en unos experimentos en los que se condujo a estudiantes con los ojos vendados¹⁵ por un conjunto de curvas, preguntándoles luego sobre si se habían sentido incómodos. Se pudo comprobar una tendencia descendente a medida que aumentaba la velocidad: a velocidades bajas, los conductores toleran mejor la incomodidad. Estos valores admisibles, evidentemente más relacionados con la velocidad que con la seguridad, se han empleado (con algunas variaciones) en la normativa de trazado relativa a las curvas.

La mayoría de las normas de trazado limitan el rozamiento transversal movilizado al 40% de la resistencia al deslizamiento transversal μ_i ; de esta manera, todavía queda para frenar un 92 % de la resistencia al deslizamiento longitudinal. La Norma **3.1-IC** de 1999 adopta un valor muy próximo al 40%.

4.1.4. Velocidad específica

La velocidad específica de una curva:

- Corresponde a unas condiciones de comodidad al transitar por ella (en seco o en mojado).
- Se basa en el valor máximo admisible

- del rozamiento transversal movilizado, descrito en el apartado anterior.
- Debe coincidir con el percentil 85 de la distribución de las velocidades operativas.
- Sirve de base a una señalización de velocidad recomendada (señales del tipo S-7).

En la *tabla 4.1-C* se indican los radios mínimos peraltados que corresponden a distintas velocidades específicas según las distintas normas, tomadas del estudio de O'Cinnéide y otros (6), actualizado.

Para las velocidades más altas hay una gran dispersión en esos radios mínimos: Finlandia es la más conservadora¹⁶, y Grecia la menos. La razón más evidente es el distinto rozamiento transversal admisible que adoptan los diferentes países.

4.2. Normativa comparada

4.2.1. Alemania

El rozamiento transversal admisible¹⁷ es un 50% del 92,5% de la resistencia al deslizamiento garantizada al 95% a nivel de red: la cual depende de la velocidad de diseño del tramo.

Para unas condiciones de diseño defini-

das para las carreteras convencionales, se aplican las restricciones de la *tabla 4.2-A*.

Tabla 4.2-A.		
Condiciones de diseño	Gama de radios (m)	Desarrollo circular mínimo (m)
EKL1	≥ 500	70
EKL2	350 – 900	60
EKL3	250 – 600	50

4.2.2. España

Ya en la Instrucción **3.1-IC** de 1964 se establecía una relación biunívoca entre radio y peralte. La Norma **3.1-IC** de 1999 ha mantenido el principio, y sigue un método parecido al **5** de la **AASHTO** (tabla 4.2-B).

Grupo 1) Autopistas, autovías y carreteras C-100:

Tabla 4.2-B. Grupo 1									
250 < R < 700	p = 8								
700 < R < 5 000	$\mathbf{p} = 8 - 7.3 \cdot (1 - 700/\mathbf{R})^{1.3}$								
5 000 < R < 7 500	p = 2								
7 500 < R	Bombeo								

Además, los vehículos de la época tenían el asiento corrido y no disponían de cinturones de seguridad.

² Autopistas

³ No autopistas.

ridad.

16 Quizás porque su peralte está limitado al 4%.
17 Con objeto de dejar un 87% de la resistencia al deslizamiento para movilizar rozamiento longitudinal.

Grupo 2) Carreteras C-80, C-60 y C-40:

Tabla 4.2-B. Grupo 2								
50 < R < 350	p = 7							
350 < R < 2 500	$\mathbf{p} = 7\text{-}6,08 \cdot (1 - 350/\mathbf{R})^{1,3}$							
2 500 < R < 3 500	p = 2							
3 500 < R	Bombeo							

Para estos peraltes, la Norma 3.1-IC de 1999 conduce a la relación entre velocidad específica y radio de la tabla 4.2-C.

en zonas de heladas frecuentes.

Dos curvas contiguas deben estar separadas por una alineación recta de al menos 200 m de longitud. Se exceptúan las curvas en S, de sentidos opuestos, cuyas clotoides contiguas se pueden tocar.

En las carreteras convencionales situadas en terreno muy accidentado, los peraltes se atienen a lo siguiente¹⁹:

V²/R > 7, está determinado por la fórmula

$$\mathbf{p} = \frac{\mathbf{V}^2}{2,828 \cdot \mathbf{R}}$$

sin que pueda rebasar un máximo del 7%.

Para cada velocidad específica hay varios radios, caracterizados por:

El correspondiente a mantener el mismo bombeo transversal que en una

Tabla 4.2-C. Autopistas, autovías y carreteras C-100. (Grupo 1)															
Velocidad específica (km/h)	80	85	90	95	100	105	110	115	120	125	130	135	140	145	150
Radio (m)	250	300	350	400	450	500	550	600	700	800	900	1 050	1 250	1 475	1 725
Peralte (%)	8,00									7,51	6,97	6,25	5,49	4,84	4,29
Tabla 4.2-C. Carreteras C-80, C-60 y C-40. (Grupo 2)															
Velocidad específica (km/h)	40	45	50	55	60	65	70	75	80	85	90	95	100	105	110
Radio (m)	50	65	85	105	130	155	190	225	265	305	650	410	485	570	670
Peralte (%)	7,00									6,50	5,85	5,24	4,67		

4.2.3. Francia

Para radios inferiores al mínimo, compatible con mantener el mismo bombeo que en una alineación recta, los peraltes se interpolan linealmente según las curvaturas 1/R, entre 2,5 (igual que en una alineación recta) y 7,0% (máximo en curva).

Para mejorar la comodidad y facilitar la visibilidad, en las autopistas se recomienda emplear radios no inferiores a 1,5 veces el mínimo compatible con mantener el mismo bombeo que en una alineación recta, siempre que ello no comporte un aumento significativo del coste. Sólo se pueden emplear curvas de radio inferior a este último límite si se cumplen las siguientes reglas:

Esa curva de radio inferior debe ir precedida, en una distancia entre 500 y 1 000 m, por una(s) curva(s) progresivamente de mayor radio; entre dos contiguas la razón del primer radio18 al segundo no debe ser superior a 1,5. El cumplimiento de esta regla es especialmente importante en zonas de riesgo, como al final de una pendiente prolongada, en el acceso a un enlace o a un área de peaje, servicio o descanso, o

- Radio inferior a 40 m: 6%
- Radio entre 40 y 250 m: interpolación lineal en 1/R entre 6 y 2,5%.
- Radio entre 250 y 400 m: 2,5%
- Radio > 400 m: bombeo como en recta. 4.2.4. Italia

El peralte en autopistas y vías principales interurbanas es del 7%20, aunque disminuye según una ley bilogarítmica a partir de un radio de 964 m (140 km/h), 667 m (120 km/h) ó 437 m (100 km/h). En túneles se puede reducir hasta el 1%.

Para ser percibida correctamente, cualquier curva debe tener un desarrollo circular no inferior a la distancia recorrida en 2,5 s a su velocidad específica.

La razón entre los radios de dos curvas consecutivas sigue las mismas pautas que la Norma española 3.1-IC de 1999, derivadas de las RAS-L alemanas.

El radio R (m) de la primera curva tras una alineación recta de L m de longitud no debe ser inferior a L si L < 300 m, ni a 400 m si es igual o superior.

4.2.5. Reino Unido

La normativa británica (1) se basa en el parámetro siguiente, igual a 127 veces la aceleración centrífuga: (V en km/h, R en m)

$$\frac{\mathbf{V}^2}{\mathbf{R}} = 127 \cdot \left(\mathbf{f_l} + \frac{\mathbf{p}}{100} \right)$$

(V en km/h, R en m).

El peralte deseable²¹ es del 5% y, si

- alineación recta. $V^2/R = 5$.
- El correspondiente a un peralte del 2,5%. $V^2/R = 7,07$.
- El correspondiente a un peralte del 3,5%. $V^2/R = 10$.
- El deseable, correspondiente a un peralte del 5% y a un valor de V2/R = 14,14.
- El absoluto, correspondiente a un peralte del 7% y a una velocidad específica situada a un nivel menos en la escala de gamas o franjas 120 - 100 - 85 -70 - 60 - 50 km/h. $V^2/R = 20$.
- El límite, correspondiente a un peralte del 7% y a una velocidad específica situada a dos niveles menos en la misma escala. $V^2/R = 28,28$.

Hay un detallado sistema de mitigaciones (relaxations) de las características estándar, el cual presenta ciertas particularidades adicionales para el caso de las curvas en planta:

- En autopistas, se pueden descender hasta 2 escalones en la secuencia de gamas de velocidades de diseño, si ésta está en la franja A (alta), y hasta 3 si está en la franja **B** (baja).
- En carreteras convencionales, se pueden descender hasta 3 escalones en la secuencia de gamas de velocidades de diseño, si ésta está en la franja A (alta), y hasta 4 si está en la franja B (baja).
- Para velocidades de diseño en la fran-

- ¹⁸ Que se encuentre en el sentido de la marcha. 19 Donde la rasante esté muy inclinada, se puede tener que reducir el peralte para que la línea de máxima pendiente no rebase el 10-12%. En cualquier caso, el peralte mínimo es del 2,5 % para radios inferiores a 400 m.
 - 20 6% en zonas de nevadas frecuentes.
 - ²¹ Se aplica este límite en zonas urbanas.

ja **B** (tanto para autopistas como para carreteras convencionales), las mitigaciones descritas pueden sufrir modificaciones:

- Con calzadas separadas, al final de pendientes de longitud superior a 1,5 km e inclinación superior al 3%, la máxima mitigación admisible se acorta 1 escalón.
- Con calzadas separadas, al final de rampas de longitud su-perior a 1,5 km e inclinación superior al 4%, la máxima mitigación admisible se alarga 1 escalón.
- En carreteras de calzada única, inmediatamente después de un tramo de adelantamiento permitido²² la máxima mitigación admisible se acorta 1 escalón.

- (1) Dames, Jürgen; Merckens, R.; Bergmann, J.: New Determination of the Evaluation Background for the Results of Skid Resistance Measurements. Forschung Strassenbau und Strassenverkehrstechnik, Vol. 413, Ministerio de Transportes, Bonn 1984.
 - Dames, Jürgen: Data Colletion and Evaluation of the Skid Resistance of Roads, Strasse unnd Autobahn, Vol. 23, 1992.
- Vigueras, Juan Francisco; Garagorri, José M.; Crespo, Ramón: La adherencia neumático - pavimento. Revista "CARRETERAS", junio 1992.
- (3) Hauer, Ezra: Safety in Geometric Design Standards I: Three Anecdotes. Proceedings of the 2nd International Symposium on Highway Geometric Design. Maguncia (Alemania), junio de 2000.
- (4) Kahl, K.; Fambro, Daniel B.: Investigation of Object-Related Accidents Affecting Stopping Sight Distances. Transportation Research Record No.1500, Waschington D.C., 1995.
- (5) Fitzpatrick, Kay; Fambro, Daniel B.; Stoddard, A.M.: Safety Effects of Limited Stopping Sight Distance on Crest Vertical Curves. Comunicación presen-
- ²² Bien porque se disponga de visibilidad suficiente, bien porque se hayan establecido carriles adicionales para facilitar el adelantamiento.

- tada a la 76ª Reunión anual del Transportation Research Board. Washington, D.C., 1997.
- O'Cinneide, Don; McAuliffe, Niall; O'Dwyer, Des: Comparison of Road Design Standards and Operational Regulations in EC and EFTA Countries. Deliverable No. 8 in DRIVE II Project V2002 HOPES. University College Cork, Cork (Irlanda), septiembre 1993.
- Fambro, Daniel B.; Fitzpatrick, K.; Koppa, R.J.: Determination of Stopping Sight Distances, NCHRP Report 400, Transportation Research Board, Washington, D.C. 1997.
- (8) Harwood, Douglas W.; Fambro, Daniel B.; Fishburn, Bruce; Joubert, Herman; Lamm, Rüdiger, Psarianos, Basil: International Sight Distance Design Practices. Proceedings of the International Symposium on Highway Geometric Design Practices, Boston (EE.UU.), enero 1995.
- Standard Specification for Geometric Designo f Rural Roads TV124E. Section for Road Planning and Design. Swedish National Road Administration. Borlange 1986.
- Hauer, Ezra: Safety in Geometric Design Standards I: Three Anecdotes. Proceedings of the 2nd International Symposium on Highway Geometric Design. Maguncia (Alemania), junio de 2000.

- (11) Bissell, H.H.; Pilkington, G.B.; Mason, J.M.; Woods, D.J.: Synthesis of Safety Research Related to Traffic Control and Roadway Elements. FHWA-TS-82-232. Federal Highway Administration, Washington, D.C. 1982.
- (12) Spacek, Peter: Track Behavior and Accident Occurrence in Curves on Two-Lane High-ways in Rural Areas. Proceedings of the 2nd International Symposium on Highway Geometric Design. Maguncia (Alemania), junio de 2000.
- (13) Lechner, D.; Ferrandez, F.; Fleury: Manoeuvres et sollicitations en situation de urgence. **INRETS** 1983.
- (14) Jiménez Alonso, Felipe; Aparicio, Francisco: Cálculo de la velocidad segura de circulación de los vehículos automóviles en función de la geometría de la carretera. Comparación de modelos. XVIII Congreso Internacional de Ingeniería Gráfica. Sitges (España), junio 2006.
- (15) Glaser, S.; Aguilera, V.: Vehicle infrastructure driver speed profile: towards the next generation of curve warning systems. 10º Congreso Mundial sobre Sistemas y Servicios Inteligentes de Transporte. Madrid, noviembre 2003
- (16) Felipe, E.; Navin, F.: Automobiles on Horizontal Curves: Experiments and Observations. Transportation Research Board's 77th Annual Meeting. Enero 1998. *