
Experiencia Espuma Betun

Foamed Bitumen Experience

GT-7 (periodo 2018-2020) Mezclas Bituminosas con Espuma de Betun. Comité de Firmes

Francisco Vea (Coordinador), Javier Payán, José Mª Sedeño, Carlos García Serrada, Mª Elena Hidalgo Pérez, Javier Loma, José Simón, Roberto Orozco Martín, Pablo Alvarez, Jose Berbis y Emilio Moreno

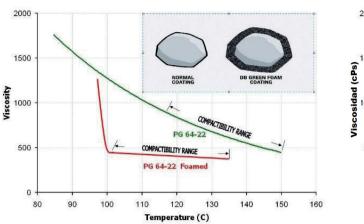
as mezclas bituminosas semicalientes, y más concretamente, las mezclas fabricadas con la tecnología de espuma de betún son, en la actualidad, el vehículo mejor posicionado, por su potencial de impacto a corto plazo, para conseguir reducciones de emisiones de CO2 significativas para los fabricantes de mezclas bituminosas. De las experiencias hasta la fecha, tanto fuera como dentro de nuestras fronteras, existe un consenso general sobre el buen comportamiento de este tipo de mezclas en los pavimentos ejecutados, encontrando, eso sí, alguna dificultad a la hora de conseguir armonización experimental en la forma de evaluar en laboratorio dicho desempeño. Es por ello que el presente artículo pretende recoger en un mismo documento la normativa actual referente a este tipo de mezclas, el estado de la técnica, algunas recomendaciones sobre la implementación de la misma y trata de realizar una primera aproximación, a nivel de experimentación en laboratorio, sobre las tendencias de comportamiento de este tipo de mezclas cuando se evalúan conforme a los protocolos y normativa actuales de ensayos de mezclas en caliente. De la dispersión de resultados encontrada entre los diferentes laboratorios involucrados, se constata que es necesaria una profundización sobre los procedimientos actuales que entendemos podría encauzarse vía acuerdos entre las distintas administraciones de carreteras y los fabricantes, de forma análoga a lo realizado en otros países, con el fin de sentar las bases de un procedimiento robusto y armonizado que permita un control de calidad representativo que refleje el buen comportamiento de este tipo de mezclas en las obras ejecutadas.

Varm asphalt mixes, and more specifically, mixes manufactured with foamed bitumen technology, are currently the best on the market, due to their potential impact in the short term, to achieve significant CO2 emission reductions for manufacturers of asphalt mixes. To date, both in Spain and abroad, there is a general consensus on the good performance of this type of mix in the pavements that have been built, although there is some difficulty in achieving experimental harmonization in the way this performance is evaluated in the laboratory. For this reason, this article aims to bring together in a single document: The current regulations concerning this type of mix, the state of the art, recommendations on the implementation of the same. Attempts to make a first approximation, at the level of laboratory experimentation, on the performance trends of this type of mix when evaluated in accordance with the current protocols and regulations for testing hot mixes. From the dispersion of results found between the different laboratories involved, it is clear that there is a need for an in-depth study. Which could be channeled via agreements between the different road administrations and manufacturers, in a similar way to what has been done in other countries. in order to lay the foundations for a robust and harmonised procedure that allows a quality control that reflects the good performance of this type of mixes in the works executed.

1. Antecedentes

El presente artículo técnico pretende aglutinar y resumir los trabaios llevados a cabo dentro del grupo de trabajo GT-7 de la ATC durante los dos últimos años y que han dirigido sus esfuerzos al estudio y encaje en la normativa actual de las características de las mezclas bituminosas semicalientes fabricadas con la tecnología de espuma de betún. Estas tareas se engloban, a su vez, dentro de los grupos de trabajo del plan estratégico PIARC para el estudio de la huella de carbono de pavimentos de carretera y responden a la estrategia global europea que persigue el pacto Verde Europeo.

Este pacto, que es parte integrante de la estrategia de la comisión europea para aplicar la Agenda 2030 y los objetivos de desarrollo sostenible de las naciones Unidas, persigue armonizar estrategias para que las empresas puedan ser parte de la solución al problema climático comprometiéndose a eliminar emisiones de carbono de sus propias operaciones y de sus cadenas de suministro con el objetivo final de que la UE sea climáticamente neutra en 2050.


Las mezclas a menor temperatura, y más concretamente las mezclas semicalientes, alternativa de reducción real del impacto ambiental para la fabricación de pavimentos para carreteras,en términos de consumo de energía y emisiones asociadas. La tecnología de espuma de betún, ya sea directa o indirecta, supone una herramienta muy potente para la generalización de esta práctica de fabricación a menor temperatura ya que las inversiones necesarias para adaptar las centrales de fabricación actuales a este proceso son asumibles a corto plazo. Está por tanto en nuestra mano que, a través del conocimiento profundo de esta técnica y de la correcta evaluación técnica de las mezclas resultantes, tanto en su fabricación como en su puesta en obra, seamos capaces de consolidar un procedimiento de fabricación que nos permita mejorar sensiblemente el impacto de nuestra actividad.

2. Normativa existente

De forma general, la normativa de referencia para las mezclas semicalientes fabricadas con la tecnología de espuma de betún, permanece invariable con respecto a las mezclas en caliente, excepción hecha de los límites de temperatura de fabricación y puesta en obra de la mezcla. Es el caso del Pliego de Prescripciones Técnicas particulares PG-3 en España, que sitúa el límite máximo de temperatura de fabricación en 140°C a la salida del mezclador para todas las tecnologías de fabricación de mezcla semicaliente. Paralelamente, su empleo se restringe, en este pliego, a pavimentos para carretera con categoría de tráfico T1 a T4.

En cuanto a la evaluación de las características de las mezclas fabricadas a menor temperatura, la normativa española permite el uso de la compactación giratoria siempre que el grado de compactación sea equivalente al método de referencia, la compactación por impactos, y ésta se alcance en un número de giros determinado. La normativa en otros países europeos apunta en la misma dirección, aunque se pueden observar cambios en los rangos de temperatura de fabricación y puesta en obra con el objetivo claro de alcanzar densidades de puesta en obra equivalentes a las alcanzables por las mezclas convencionales.

En Alemania, por ejemplo, se definen los rangos de temperatura de fabricación y extendido en función del grado de penetración del betún empleado[1]. En Noruega se admite la mezcla de betunes de distinto grado para conseguir betunes con mayor capacidad de espumación[1]. En el caso de Francia, se fomenta la colaboración entre SETRA (Service d'études techniques, des routes et autoroutes) y las empresas implicadas en el desarrollo de técnicas a menor temperatura, con el fin de aprobar protocolos, guías de aplicación y estándares de calidad [1]. Fuera de las fronteras europeas, en EEUU, donde el auge del uso de mezclas semicalientes fabricadas con espuma de betún es significativo, se han desarrollado por parte de las administraciones numerosas investigaciones con el fin de potenciar la reducción de emisiones en la fabricación de mezclas asfálticas a través del uso de la espuma de betún. Con carácter general, de estas investigaciones destaca la variabilidad de resultados encontrados, la especial relevancia de los parámetros de sensibilidad al agua [2] y deformaciones plásticas en las mezclas fabricadas con esta tecnología y la necesidad de la obtención de datos de los tramos ejecutados con distintos materiales para ajustar los parámetros de valoración en laboratorio [3]. Al otro lado del mundo, cabe mencionar en este apartado el caso de la Main Roads Western Australia [4] que no permitía el uso de betunes espumados (sí aditivos tipo Sasobit) para mezclas semicalientes, hasta la elaboración de un estudio pormenorizado guiado por la administración (Clayton, 2015) [5] que recomendó finalmente el uso de promotores de la adhesividad o de hidróxido de calcio para minimizar los riesgos asociados a un mayor potencial de susceptibilidad al agua de este tipo de mezclas.

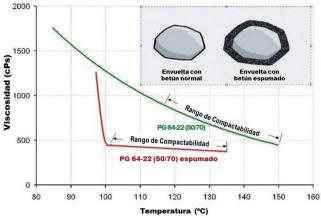


Figura 1. Esquema de la expansión de la burbuja de betún espumado y comparativa de viscosidad y capa de recubrimiento

3. Descripción de la técnica

3.1. Procesos desarrollados

Aunque el uso de la espuma de betún como alternativa al empleo de emulsiones para la fabricación de mezclas a temperatura ambiente y la ejecución de reciclados in situ era bien conocido, el empleo de betún espumado como medio para reducir la temperatura de fabricación de las mezclas asfálticas convencionales se desarrolló inicialmente en Francia, en la primera década del s. XXI, en respuesta a la preocupación por la protección del medio ambiente.

Esta tecnología de espumación de betún consiste en el empleo de pequeñas cantidades de agua que se evaporan al entrar en contacto con el betún caliente, quedando el vapor atrapado dentro de la matriz del betún. Este vapor provoca la expansión del betún y la disminución de su viscosidad, permitiendo una mejor envuelta y manejabilidad de la mezcla (Figura 1).

El betún espumado presenta una menor viscosidad y un mayor grosor de la capa que envuelve los áridos durante el proceso de mezclado, cambiando la reología de la mezcla bituminosa, lo que permite realizar el proceso de compactación a me-

nor temperatura, de 20 a 40°C inferior a las mezclas bituminosas en caliente.

A continuación, se enumeran y describen brevemente los principales procesos desarrollados [6].

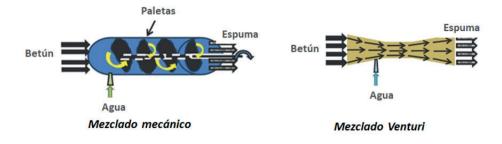
3.1.1. Espumación indirecta

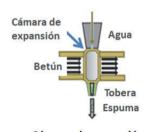
En este grupo se incluyen dos tecnologías. En la primera se emplean zeolitas sintéticas para producir una espumación indirecta del betún (ASPHA-MIN® de la empresa Eurovia). La zeolita es un producto en polvo compuesto de cristales de silicato de alúmina hidratado que, en presencia de los áridos a 150°C, libera su agua cristalina produciendo vapores y una expansión espumosa del betún caliente [7]. En la actualidad este proceso está en desuso principalmente debido al elevado coste de las zeolitas.

El segundo método para obtener una espumación indirecta es el que aprovecha la humedad natural presente en la arena para provocar la expansión del betún. Una parte del árido fino se introduce directamente en el mezclador sin haber pasado por el secadero de áridos. El vapor generado al contacto de esta arena húmeda con los áridos calientes y el betún, produce la espumación de este. Dentro de esta técnica existen dos variantes (proceso LEA de FAIR-

CO y proceso EBT de Eiffage), que se diferencian principalmente en el momento en el que se introduce la arena húmeda (antes o después de la inyección del betún) [8],[9],[10].

3.1.2 Espumación directa


En la bibliografía se pueden identificar varios sistemas mecánicos para conseguir la formación de la espuma con el betún; métodos como Mezclado mecánico, mezclado mediante Venturi, mediante cámara de expansión, molino coloidal o de cizalla, aire y agua atomizada y aqua atomizada a alta presión.


Ejemplos de sistemas industriales para la generación de betún espumado son:

- Sistema ARGUMOUSSE desarrollado por ARGUMAT (CBS);
- Generador de espuma AM-MANN, AMMANN FOAM;
- Sistema AQUABLACK de MARI-NI-ERMONT;
- Generador BITFOAM desarrollado por INTRAME.

Para poder evaluar la espuma generada durante este proceso se establecen diversas propiedades [11]:

- Estabilidad del betún espumado: tiempo que requiere la espu-

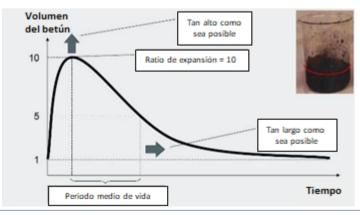

Cámara de expansión

Figura 2. Distintos sistemas de espumación mecánica

ma para colapsar. Las burbujas formadas pueden mantener el equilibrio por pocos segundos: a medida que el betún se enfría, el vapor en las burbujas se condensa causando el colapso y la desintegración de la espuma. Por otra parte, cuando la presión de vapor en el interior de la burbuja es muy grande, la película de betún se expande más allá del límite de elongación, quebrándose antes de lograr el equilibrio.

- Razón de Expansión: relación entre el máximo volumen de espuma y el volumen del asfalto sin espumar.
- Vida Media: es el tiempo transcurrido, en segundos, desde el estado espumado hasta llegar a la mitad del máximo volumen obtenido.
- Índice de Espumación: se define como el área bajo la curva de la Razón de Expansión y Tiempo de Colapso.

A mayores temperaturas de espumado y mayor cantidad de agua, se incrementa la Razón de Expansión y a su vez disminuye la Vida Media, lo que obliga a llegar a una optimización (Figura 3). Bajas presiones de inyección afectan negativamente tanto a una como a otra, al igual que agentes anti espumantes presentes en el betún (siliconas). En general, se recomiendan Razones de Expansión comprendidas entre 8 y 15 y al menos 15 segundos de Vida Media. Mediante el empleo de aditivos se pueden obtener valores más elevados.

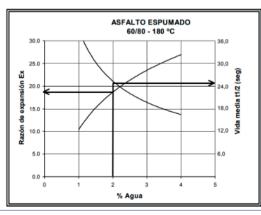


Figura 3. Curvas de comportamiento de la espuma de betún, con el tiempo y la temperatura

Atendiendo a la experiencia en el país pionero (Francia) en el empleo de la espumación de betún como técnica para la reducción de temperatura, la tendencia actual es la utilización del proceso de espumación directo, más sencillo en cuanto a la producción de la mezcla, renunciando a los otros procesos desarrollados de espumación indirecta.

3.2. Recomendaciones para el empleo de la técnica de espumación directa de betún

La experiencia adquirida sobre las mezclas con espuma de betún que se enumera a continuación se apoya en su mayoría sobre la guía técnica francesa "Bajada de temperatura de mezclas bituminosas. Estado del arte y recomendaciones" [12].

3.2.1. Producción

3.2.1.1. Control y ajuste del quemador

La producción de mezcla semicaliente necesita que los quemadores de los tambores-secadores funcionen en una gama de aplicaciones diferentes de las utilizadas para la producción de mezcla caliente. Por lo tanto, es necesario ajustar los quemadores a este nuevo rango de uso para optimizar los parámetros de combustión.

3.2.1.2. Tratamiento del vapor de agua

El uso de agua en la zona de mezcla provoca la liberación de vapor de agua al entrar en contacto con materiales calientes.

En el caso de las plantas discontinuas, la utilización de estos procesos requiere la adición de un dispositivo de tratamiento de vapor de agua para evitar la condensación que podría generar problemas de corrosión y/u obstrucción.

Este dispositivo consiste principalmente en la adición de un conducto conectado al filtro de mangas de la instalación. Este conducto debe estar térmicamente aislado y tener una pendiente pronunciada para evitar problemas de condensación y/u obstrucción.

3.2.1.3. Impacto de la disminución de la temperatura en las emisiones

La disminución de la temperatura del aglomerado cambia la eficiencia térmica de los tamboressecadores. Este cambio resulta en una disminución de la temperatura de las emisiones a la salida del secador de tambor. Los filtros de mangas necesarios para filtrar los gases de secado, que están cargados de elementos finos (filler), deben funcionar con temperaturas de gas superiores a un umbral crítico (el punto de condensación) para evitar problemas de obstrucción por una mezcla de agua y finos y/o corrosión. Es importante asegurarse que la temperatura del gas no desciende de ese umbral crítico durante la fabricación de mezclas semicalientes. Una forma de evitar esto es con la adición de reciclado, lo que permite trabajar con temperaturas más altas en el secadero.

3.2.2. Formulación

La espumación del betún no cambia las fórmulas de mezclas. No obstante, en algunos países (por ejemplo, en Francia), se requiere el empleo de una planta de fabricación con betún espumado en laboratorio para realizar los estudios de formulación en las mismas condiciones de fabricación que en planta.

3.2.3. Puesta en obra

A raíz del seguimiento realizado por la Administración francesa en obras experimentales con aplicación de mezclas semicalientes con espuma, en la guía mencionada se concluye que este tipo de mezclas requieren más atención en la puesta en obra que las mezclas calientes, recomendándose un cierto número de puntos de vigilancia:

- Un tiempo de transporte y espera de más de una hora para las mezclas asfálticas desde la fabricación hasta la aplicación puede provocar defectos de adherencia entre capas o dificultades de compactación debido a una temperatura de aplicación demasiado baja y, por lo tanto, una pérdida de manejabilidad;
- El transporte de aglomerado a larga distancia mediante un camión sin aislamiento puede provocar también los defectos precedentes;
- El precalentamiento insuficiente de la regla de la extendedora puede dar lugar a defectos estéticos, especialmente en forma de arrastres;
- Los métodos de compactación deben adaptarse para obtener una buena macrotextura.

La realización del tramo de prueba es importante para ajustar la aplicación y evitar cualquier deriva.

3.2.4. Comportamiento

En general, el seguimiento realizado en Francia sobre obras experimentales ha mostrado un comportamiento similar con las mezclas calientes. Sin embargo, cabe señalar algunos problemas que surgieron en algunos de los tramos experimentales:

 Defectos de baja compactación y defectos de textura que provocó

la paralización de los trabajos. Se culpó al tiempo que se tardó en

transportar o el tiempo de espera de los camiones antes de comenzar la puesta en obra.

 Aparición más rápida de fisuraciones y mayor sensibilidad a la pérdida del ligante superficial en comparación con la mezcla caliente.

4. Protocolo de campaña de ensayos

Uno de los problemas que presenta esta tecnología de fabricación con espuma de betún son los trabajos realizados en los laboratorios de ensayo para el diseño y el control de calidad de las mezclas bituminosas a menor temperatura. Existen diferencias importantes entre los valores obtenidos en los ensayos realizados con los materiales recién fabricados o recalentados, así como la utilización de distintos procedimientos para la fabricación de probetas en el laboratorio.

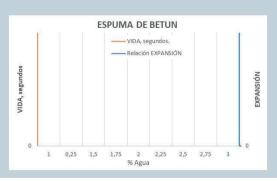
También es necesario avanzar en establecer una correlación de los resultados obtenidos durante su fabricación con los que son obtenidos con el material colocado en la obra, ya sea en la determinación de las densidades como el control de propiedades mecánicas.

Por todo ello es importante definir un protocolo que permita fijar en cada fase del proceso los parámetros adecuados, con el objetivo de realizar los trabajos con mayor precisión y reducir la incertidumbre que se obtiene durante la realización de estos trabajos. La disponibilidad de estos datos permite analizar todos los resultados obtenidos con mayor precisión.

4.1. Datos iniciales.

Es importante conocer los materiales y la forma en que se manejan durante la fabricación de la mezcla en la planta, para así poder verificar la trazabilidad y establecer el procedimiento más adecuado. Estos datos son el tipo de mezcla a fabricar y de ligante o la naturaleza de los áridos,

además de indicar si se utiliza material fresado en la fabricación de la mezcla, así como el porcentaje empleado, fracciones y el sistema de incorporación del mismo a la mezcla.


Otros datos de interés son el tipo y modelo de la planta de fabricación de mezcla y del espumador de la instalación, la cual debe contar con un dispositivo específico que permita realizar correctamente la toma de muestra de la espuma formada, siendo esto importante para regular la correcta fabricación y poder determinar el porcentaje de agua óptimo de fabricación a partir de los resultados del tiempo de vida y de la expansión de la espuma.

El registro de estos datos es: (ficha 1)

Definición expansión: relación entre el volumen máximo alcanzado por el betún en el estado espuma y el volumen del betún sin espumar

Definición tiempo de vida de la espuma: tiempo, en segundos, que tarda la espuma en sedimentarse hasta la mitad del volumen máximo obtenido

La representación en un gráfico de los valores obtenidos en las pruebas anteriores permitirá establecer el porcentaje de agua óptimo que se debe emplear para realizar el proceso de espumación del betún en la instalación.

4.2. Procedimiento.

4.2.1. Fabricación de la mezcla

En gran medida, el éxito de la técnica depende de la temperatura de los materiales constituyentes y tiempos de envuelta. Por ello es preciso realizar la verificación del correcto proceso en la planta de fabricación, mediante el registro de los tiempos de envuelta en húmedo árido+betún, la temperatura de todos los materiales previos al mezclado (áridos y ligante), y de la temperatura final y la humedad de la mezcla. (ficha 2)

4.2.2. <u>Muestreo y acondiciona-</u> miento

Se debe seleccionar y registrar la zona donde se realiza la toma de muestra, si es en la planta de fabricación de la mezcla, en extendido o con la muestra fría (porción o testigo), así como el tiempo transcurrido entre la toma de la muestra y la fabricación de las probetas.

En muchos casos, los laboratorios no se encuentran a pie de planta por lo que es necesario realizar un proceso de acondicionamiento previo de las muestras a ensayar para así garantizar las mismas condiciones. En función de la temperatura inicial de la

mezcla a su entrada en el laboratorio, en el ensayo se siguen los siguientes criterios:

- Si la mezcla tiene una temperatura por encima de 100 °C, mantener la mezcla dentro de la estufa durante 30 minutos a la temperatura de fabricación.
- Si la mezcla tiene una temperatura entre 75 y 100 °C, mantener la mezcla dentro de la estufa durante 60 minutos a la temperatura de fabricación.
- Para una temperatura menor de 75 °C, mantener en estufa durante 90 minutos a la temperatura de fabricación. (ficha 3)

NOTA 1: Se puede tomar como valor de temperatura estándar de las mezclas con espuma de betún, 135 °C en fabricación.

NOTA 2: Para las mezclas que hayan sido acondicionadas o recalentadas una vez no pueden ser reutilizadas en las mismas condiciones de valores de menor temperatura.

Se efectúan los ensayos de composición para realizar el contenido de ligante por ignición o disolventes y la granulometría de los áridos. Para estos ensayos debe determinarse o eliminar previamente el contenido de humedad de la mezcla.

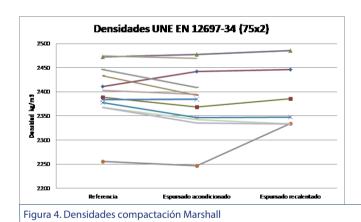
4.2.3. Fabricación de las probetas.

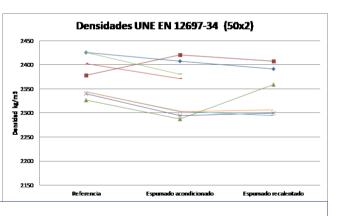
Se pueden fabricar las probetas con los equipos de impacto o con la compactadora giratoria, aplicando la misma energía que para las mezclas convencionales.

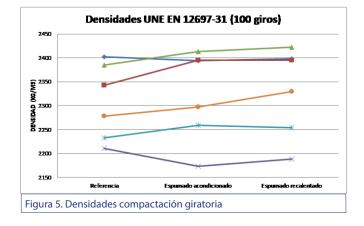
Una vez fabricadas se mantienen en el molde entre 4 y 24 horas, procediendo posteriormente a desmoldarlas. Antes de determinar su densidad, se mantienen al aire a temperatura ambiente durante 24 horas para facilitar la pérdida de humedad residual.

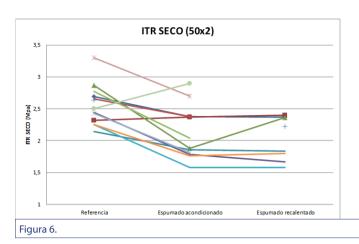
Los ensayos se realizan siguiendo cada uno de los procedimientos normalizados.

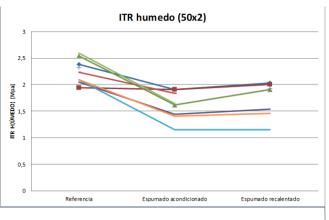
IMPORTANTE: La evaluación de las propiedades de las mezclas fabricadas con espuma de betún debe realizarse evaluando los distintos parámetros, pero aplicando los mismos procedimientos y condiciones de ensayo utilizando mezclas fabricadas en las mismas instalaciones y con un ligante a las temperaturas convencionales de trabajo (p.e., no debe compararse la resistencia a tracción de probetas fabricadas con impacto con las probetas fabricadas con giratoria)

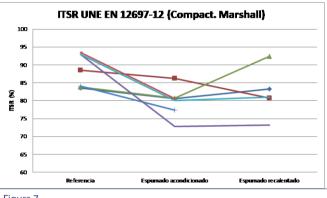

Temperatura áridos		Temperatura ligante		Temperatura mezcla	
Tiempo envuelta		Humedad mezcla			
Ficha 2.					
Muestra en fabricación		Muestra en extendido		Muestra material frio	
Temperatura laboratorio		Fiempo acondi- cionamiento		Temperatura estufa	
Ficha 3.					


5. Resultados


Como apoyo a las labores del grupo de trabajo GT-7 de la Asociación Técnica de Carreteras sobre mezclas semicalientes fabricadas con espuma de betún, se han realizado por parte de los laboratorios de algunas de las empresas participantes, una serie de ensavos siguiendo los protocolos establecidos en el apartado anterior. El objetivo de estos ensavos era el de encontrar tendencias significativas en el comportamiento de las mezclas semicalientes fabricadas mediante la tecnología de espuma de betún, frente a los ensayos preceptivos establecidos en el PG-3 en su artículo 542 que evalúan, en la actualidad, la bondad del comportamiento de las mezclas en nuestras obras. La presencia o no de estas tendencias debería situarnos ante un escenario en el que poder evaluar si los ensayos y protocolos de actuación utilizados hasta la fecha en la validación de mezclas en caliente, son totalmente compatibles con la evaluación de parámetros de mezclas semicalientes fabricadas con espuma de betún, manteniendo los niveles de prescripción descritos en el PG-3.


Uno de los documentos de referencia durante las sesiones del grupo de trabajo GT-7 ha sido el informe "NCHRP Report 763. Evaluation of the Moisture Susceptibility of WMA Technologies", de la Transportation Research Board estadounidense, donde se aborda la variabilidad encontrada para los parámetros de ensayos de sensibilidad al agua de mezclas semicalientes en función del tipo de técnica de fabricación, la naturaleza de las probetas de ensavo (fabricadas en laboratorio o en campo) y del acondicionamiento de las muestras antes de fabricar los especímenes de ensavo de las mismas. Tomando en consideración lo descrito con anterioridad y teniendo en cuenta las diferentes variables dentro del control de calidad que podemos encontrar de forma real en nuestras obras, se consensuaron una serie de protocolos encaminados a examinar las variaciones de parámetros clave para la validación de mezclas semicalientes con espuma de betún en torno a las densidades de los especímenes, su contenido en huecos y la resistencia a tracción indirecta (incluidos ratios ITSR). Así se han realizado 18 grupos de ensayo que incluyen resultados sobre una mezcla de referencia (generalmente AC16S) y sus variantes espumadas con y sin recalentamiento previo a la fabricación de probetas.


Este conjunto de ensayos no ha respondido a una estructura de ejercicio de intercomparación, pues lo que se ha perseguido no es tanto evaluar el sesgo de los métodos de ensayo (ya conocidos y explicitados en las normas correspondientes) como la constatación o no, a nivel de control de laboratorio, de la presencia de tendencias significativas en el comportamiento de las mezclas semicalientes fabricadas con espuma de betún con respecto a las mezclas calientes.



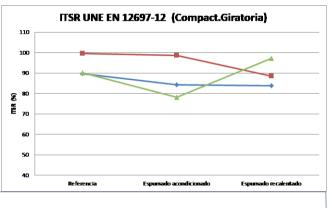


Figura 7.

Uno de los primeros parámetros que se ha pretendido evaluar ha sido la evolución de las densidades obtenidas para las mezclas de referencia (en caliente) y las mezclas semicalientes espumadas, con el fin de conocer si existe una tendencia a la disminución de la compactación en las condiciones marcadas en los protocolos. En los siguientes gráficos se representa dicha evolución en función del tipo de mezcla para compactaciones con compactador Marshall UNE EN 12697-34 (75 y 50 golpes por cara) y con compactador giratorio UNE EN 12697-31 (100 giros).

En ningún caso las tendencias parecen estar perfectamente definidas. No obstante, para el caso de las mezclas compactadas mediante la metodología Marshall se puede observar que una mayoría sufren una disminución de densidad con respecto al material de referencia para la condición de espumado acondicionado y una posterior estabilización (incluso rebote en algún caso) al tratar previamente la

muestra con el protocolo de recalentamiento. En el caso de la compactación giratoria, la tendencia parece invertirse, ya que una mayoría de experiencias evolucionan hacia una mejora de la compactación.

Para los ensayos de tracción indirecta UNE EN 12697-23 las tendencias encontradas se reflejan en los siguientes gráficos: (Figura 6)

De los gráficos obtenidos se puede inferir que, para el caso de compactaciones por impacto, existe un cierto paralelismo entre la tendencia mavoritaria en el comportamiento de las densidades y de los valores de tracción indirecta, como cabría esperar. Se obtienen, en líneas generales, valores menores de tracción indirecta respecto al patrón con las muestras espumadas acondicionadas y esta tendencia se mantiene, con algún ligero repunte, para las muestras espumadas recalentadas. Esto ocurre para el caso de probetas curadas en húmedo y en seco dentro del procedimiento del ensayo de sensibilidad al agua UNE EN 12697-12.

En lo referente a la relación de tracciones indirectas (ITSR) en el ensayo de sensibilidad al agua, se han obtenido las siguientes tendencias experimentales. (Figura 7)

Se observa un descenso en los ratios de tracción indirecta, más acusados en el caso de las compactaciones por impacto y en algún caso mejoras al introducir recalentamiento en el tratamiento inicial de las muestras.

6. Conclusiones y futuras líneas

La tecnología de espuma de betún, ya sea directa o indirecta, supone una alternativa de reducción real del impacto ambiental para la fabricación de pavimentos para carreteras, en términos de consumo de energía y emisiones asociadas ya que las inversiones necesarias para adaptar las centrales de fabricación actuales a este proceso son asumibles a corto plazo.

Uno de los principales hándicaps que presenta esta tecnología de fabricación con espuma de betún para su total implementación a gran escala en nuestro país es la definición de los procesos de evaluación de los laboratorios de ensayo para el diseño y el control de calidad de las mezclas bituminosas a menor temperatura.

Existen diferencias importantes entre los valores obtenidos en los ensayos de laboratorio realizados con los materiales recién fabricados o recalentados, así como en la utilización de distintos procedimientos de compactación de probetas en el laboratorio recogidos en la normativa. Es por ello que parece de vital importancia el definir un protocolo que permita fijar en cada fase del proceso los parámetros adecuados, con el objetivo de realizar los trabajos con mayor precisión y reducir la incertidumbre.

También es necesario avanzar en establecer una correlación de los resultados obtenidos durante su fabricación con los que son obtenidos con el material colocado en la obra, ya sea en la determinación de las densidades como en el control de propiedades mecánicas.

De las experiencias realizadas, no parecen estar claramente definidas las tendencias de evolución de las densidades obtenidas para las mezclas de referencia (en caliente) y las mezclas semicalientes espumadas. No obstante, para el caso de las mezclas compactadas mediante la metodología Marshall se observa que una mayoría sufre una disminución de densidad con respecto al material de referencia para la condición de espumado acondicionado y una posterior estabilización al tratar previamente la muestra con el protocolo de recalentamiento.

Como cabría esperar, para el caso de compactaciones por impacto, existe un cierto paralelismo entre la tendencia mayoritaria en el comportamiento de las densidades y de los valores de tracción indirecta y de sensibilidad al agua, es decir, se obtienen valores menores respecto al patrón con las muestras espumadas acondicionadas.

Como conclusión general debemos apuntar a la necesidad de disponer de más experiencias, en condiciones normales de obra con un régimen estacionario de fabricación de mezclas semicalientes en planta, para la obtención de valores concluyentes a nivel de prestaciones mecánicas de las mezclas semicalientes.

Todo ello con el objeto de conocer el comportamiento real de la mezcla espumada en obra en cuanto a grado de compactación final, para así tratar de estandarizar un procedimiento de trabajo de laboratorio que sea representativo del comportamiento real. Esto dotará de robustez a los procesos de validación y sentará las bases sobre cual debe ser el estándar de ensayo para este tipo de mezclas espumadas, y si los valores exigidos deben ser los mismos que las mezclas en caliente para que representen el verdadero desempeño de la mezcla en servicio.

7. Referencias

- Warm mix asphalt: European Practice. National Cooperative Highway Research Program (Federal Highway Administration. February 2008
- [2] Evaluation of the Moisture Susceptibility of WMA Technologies. NCHRP Report 763. National Cooperative Highway Research Program. TRANSPORTATION RE-SEARCH BOARD. 2014
- [3] Regional Implementation of Warm Mix Asphalt. Final Report 534. Southeast Transportation Consortium. University of Kentucky.2014
- [4] Development of specifications and technical guidelines for warm mix asphalt. PRP16018-Final Report.

- Western Australian Road Research and Innovation Program. Nov. 2018
- [5] Clayton, R 2015, 'Introduction of warm mix asphalt into Western Australia', Australian Geomechanics, vol. 50, no. 1, pp. 121-9.
- [6] Onfield, J.N., Enrobé Tièdes: Pourquoi vont-ils se substituer aux enrobés à chaud?, in Route Actualité, n°178, septembre 2009, p.27
- [7] Hurley, Graham & Prowell, Brian & Huner, Mike. (2020). EVALUATION OF ASPHA-MIN® ZEOLITE FOR USE IN WARM MIX ASPHALT.
- [8] Romier, A & Martineau, Y. & David, J & Audeon, M. (2004). Procédé de fabrication d'un enrobé bitumineux (Institut National de la Propriété Intellectuelle – No FR2853919).
- [9] Romier, Alain & Audeon, Maurice & David, Jacques & Martineau, Yves & Olard, François. (2006). Low-Energy Asphalt with Performance of Hot-Mix Asphalt. Transportation Research Record: Journal of the Transportation Research Board. 1962. 101-112. 0.1177/0361198106196200112.
- [10] Antoine, J.P. & Olard, F. & Huon, P. (2006). Procédé pour fabriquer un enrobé bitumineux (European Patent Office – No EP1717369).
- [11] Sitio internet de Route de France, « Bilan environnemental – Rapport annuel 2019 »: https://www. routesdefrance.com/wp-content/ uploads/RDF-Bilan-environnemental-2019_v2020-07-24_BD.pdf
- [12] IDRRIM, Abaissement de température des mélanges bitumineux : Etat de l'art et recommandations, CEREMA, 2015, coll. "Références".
- [13] Lessueur, D., Clech, H., Brosseaud A. et al., Foamed bitumens Foamability and Foam Stability, in Road Materials and Pavement Design, Volume 5, № 3/2004, p.277-302. ❖