
Refuerzo de bases y mejora de explanadas con geosinteticos

Base reinforcement and improvement of subgrades with geosynthetics

GT-5 Geosintéticos del Comité Técnico de Firmes

Asociación Técnica de Carreteras

iguiendo con el objetivo del grupo de trabaojo, este artículo pretende llenar las lagunas existentes en estos momentos en la utilización de geosintéticos en el refuerzo de bases y la mejora de explanadas, poniendo de manifiesto su aplicación desde hace muchos años, indicando la necesidad de un adecuado conocimiento de ciertas propiedades del suelo y del geosintético y mencionando aquellas más importantes en la interacción suelogeosintético y presentando diferentes métodos de cálculo que actualmente se utilizan por todo el mundo. Lo que puede ayudar al proyectista a elegir la mejor solución para su problema y a comprender de una forma sencilla y didáctica cuando es o no posible plantearse el empleo de un geosintético para este uso.

Los geosintéticos representan una solución real para la construccion de firmes y explanadas. Además de su alta resistencia a cargas mecánicas, los geosintéticos también ofrecen numerosos beneficios fundamentales, especialmente en términos de ahorro de costes y eficiencia medio-ambiental.

ollowing the objective of the working group, this article aims to fill the gaps that currently exist in the use of geosynthetics in base course reinforcement, highlighting their application for many years, indicating the need for an adequate knowledge of certain soil and geosynthetic properties and mentioning those most important in the soil-geosynthetic interaction and presenting different design methods that are currently in use all over the world. This can help the designer to choose the best solution for his problem and to understand in a simple and didactic way when it is or is not possible to consider the use of a geosynthetic for this application.

Geosynthetics represent a real solution for base course reinforcement. Quite apart from their extremely high resistance to mechanical loads, they offer a number of key benefits, particularly in terms of cost-effectiveness and eco-efficiency.

1. Introducción

El refuerzo de suelos con materiales tejidos no es una técnica novedosa. Así en el Ziggurat Agar Quf, 1400 a.C. Figura 1, se emplearon esteras de caña en muros y cimentaciones con el fin de mejorar la resistencia a tracción del suelo. (Ziegler, 2017) (Palmeira, 1987). Lo que ha evolucionado son, principalmente, los materiales empleados y la técnica, pasando de materiales de origen natural a materiales metálicos y finalmente a materiales poliméricos. Estos últimos ofrecen propiedades mecánicas, hidráulicas y de durabilidad, así como una puesta en obra muy adecuada, lo que ha llevado a que su uso sea el más extendido, especialmente en el campo del refuerzo de firmes.

Este artículo pretende mostrar el papel que desempeña el geosintético en el refuerzo de bases y en la mejora de explanadas, indicando la necesidad de un adecuado conocimiento de ciertas propiedades del suelo y del geosintético y mencionando aquellas más importantes en la interacción suelo-geosintético. Ésta es la base fundamental para dar una eficaz respuesta del conjunto a las acciones externas. Por otro lado. se describen los métodos de cálculo más extendidos para el diseño con geosintéticos en esta aplicación. En resumen, con este artículo se pretenden exponer los puntos más relevantes del uso de estos materiales en el refuerzo de bases y mejora de explanadas, intentando mostrar que desde el diseño hasta la puesta en obra el conjunto debe "visualizarse" como un material compuesto y no como dos materiales individuales.

2. Estado del arte.

En el diseño para la construcción de firmes y explanadas, se requieren materiales de alta calidad con el fin de cumplir con las normas e instrucciones. Sin embargo, en diferentes zonas del mundo, los materiales de calidad no están disponibles o escasean. Estas limitaciones llevaron a buscar diseños alternativos, utilizando suelos o materiales granulares de calidad inferior, consiguiendo así una optimización de los recursos naturales y una solución sostenible, incluyendo el uso de técnicas novedosas que permitieran un comportamiento idóneo del conjunto. Una de estas técnicas innovadoras era el uso de los geosintéticos (USACE, 2003).

Hoy en día y desde hace tiempo, además del aprovechamiento de los materiales propios, se suma la optimización del diseño. Esto es debido a la aplicación de una de las funciones más reconocidas de los geosintéticos, el refuerzo, que permite mejorar las fuerzas de cohesión del conjunto suelo-geosintético.

A principios de la década de los 80 Jewell y otros autores (Jewell, 1980); (McGown & et al., 1981) estudiaron que el refuerzo con geosintéticos, en ciertos tipos de suelos, ayuda a reducir tensiones de tracción dentro de los mismos, aumentando así la resistencia global del material compuesto. Posteriormente, Palmeira (Palmeira, 1987) llevó a cabo estudios en laboratorio con los diferentes tipos de geosintéticos y otros tipos de refuerzos, analizando su grado de eficacia a través de ensayos de corte directo y pull-out test. Se evaluó cada familia de geosintéticos según su mecanismo de fricción, soporte o fricción y soporte. Así los geotextiles tienen eficacia a nivel de mecanismos de fricción, mientras que las geomallas se basan en mecanismos de soporte, por ser éstas un conjunto paralelo de nervios que trabajan a tracción o en red abierta, con la apertura suficiente como para permitir el paso del suelo o material granular circundante (Koerner, 1998).

Figura.1 Refuerzo de suelo en el Ziggurat Aqar Quf 1400 a.C (Ziegler, 2017)

Por lo tanto, para un diseño adecuado se deben tener en cuenta tres factores importantes: naturaleza y características mecánicas del suelo, las propias del geosintético e interacción suelo-geosintético (Palmeira, 1987). En cuanto a la naturaleza de los suelos y, en el caso que nos ocupa, los suelos mayormente empleados en el refuerzo de bases son los materiales granulares. Hay que tener en cuenta que la respuesta tensióndeformación de los suelos obedece a factores como la estructura del grano, densidad, grado de saturación, presión intersticial o historial de cargas, además de existir una relación entre las tensiones cortantes a la rotura o desviadoras q y las tensiones principales p. Los puntos de fluencia del suelo, en esta relación de tensiones, dibujan la recta con pendiente M indicada en la ecuación (1). Dicha recta establece la línea de estados críticos (LEC o CSL) para los cuales la deformación continúa de forma irreversible, no existiendo estados posibles por encima de esta línea (Cuenca Payá). El valor de M está relacionado con el ángulo de rozamiento interno del suelo según (2), aumentando con la pendiente M. Suelos con mayor ángulo de fricción soportarán estados de tensión supe-

riores. Por tanto, el suelo debe estar sometido a tensiones que no permitan alcanzar los estados de fluencia definidos por las líneas límite LEC o CSL (en tracción y compresión). Así uno de los objetivos principales del geosintético es reducir la facilidad para que el suelo, sometido a tensiones, alcance la línea LEC o CSL, creando una respuesta de conjunto con menor deformación y mayor resistencia (Ziegler, 2017). Esta mayor resistencia y menor deformabilidad permitirá efectuar diseños más optimizados.

$$q = M \cdot p \tag{1}$$

$$\sin \phi = \frac{3 \cdot M}{6 + M} \tag{2}$$

Para el caso concreto del refuerzo de bases y explanadas y teniendo en cuenta las condiciones de contorno, se pueden indicar tres mejoras principales en el uso del geosintético (Haliburton & et al., 1981):

1) Restricción lateral entre base y subbase: Reducción de las deformaciones laterales por efecto del geosintético, mediante fricción (geotextiles) o soporte interlock (geomallas) Figura 3. Por su parte, en la Figura 4 se pueden observar las tensiones producidas en el contacto entre suelos con y sin geosintético (σ_{r} , σ_{rr}) siendo superiores las tensiones soportadas con el refuerzo σ_{a} (3). Suelos con explanadas muy deformables ofrecen una baja restricción lateral, por ello el uso del geosintético conlleva el aumento de dicha restricción. Esta función es la principal en esta aplicación.

$$\sigma_r > \sigma_{nr}$$
 (3)

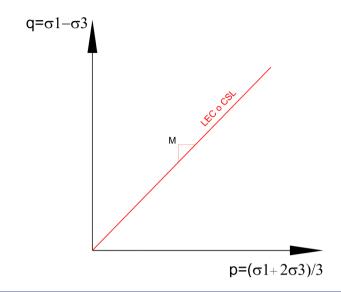


Figura 2. Gráfica que relaciona las tensiones cortantes a la rotura o desviadoras q y las tensiones principales p

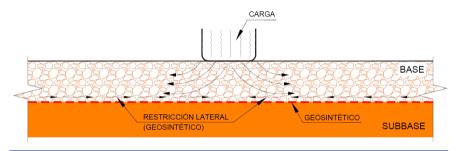


Figura 3. Restricción lateral por efecto de geosintético.

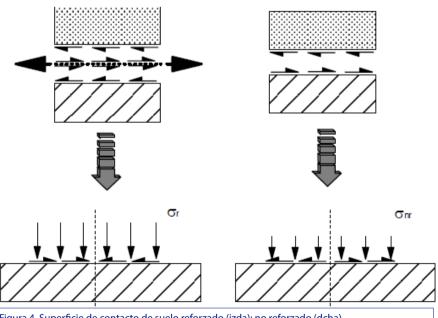


Figura 4. Superficie de contacto de suelo reforzado (izda); no reforzado (dcha)

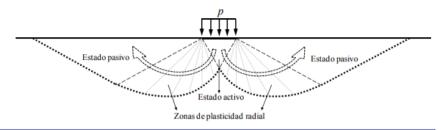


Figura 5. Mecanismo de rotura general Terzaghi.

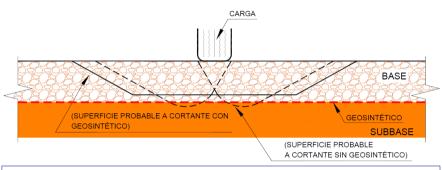


Figura 6. Distribución de la superficie a cortante con y sin geosintético.

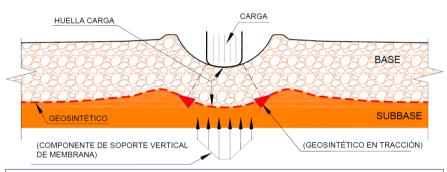


Figura 7. Efecto membrana debida al geosintético.

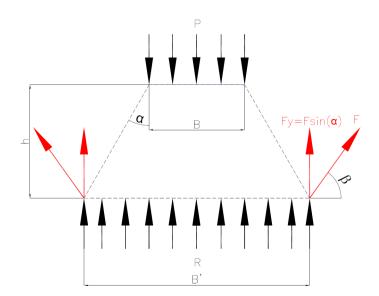


Figura 8. Sistema de fuerzas en la interacción suelo-geosintético.

- 2) Aumento de la capacidad portante del conjunto: Analizando el mecanismo de rotura de un suelo mediante carga distribuida vertical se pueden establecer las zonas de mayor cortante dentro de los materiales, Figura 5. Así, en una situación sin geosintético, la línea de rotura conformada por los tramos rectos (estados activos y pasivos) y la espiral logarítmica (zona de plasticidad radial) dependerá de la carga y de las propiedades del suelo, cohesión y ángulo de rozamiento interno, c y Φ. La inclusión del geosintético hará que la línea de rotura se vea modificada, reduciendo la zona plástica. Figura 6.
- 3) Efecto membrana: Establece una separación entre los materiales y mejora la capacidad de distribución del esfuerzo vertical (Figura 7). Analizando el sistema de fuerzas, (4); (5), del trapecio de las Figuras 7 y 8 puede deducirse la influencia de las propiedades del geosintético, deformación en tracción ε, y rigidez del mismo J, así como las del suelo, a través de su ángulo θ en la capacidad de soporte. Para que se produzca este efecto debe existir una deformación plástica en la base; es decir, roderas con espesores cercanos a los 100 mm. (Barry R., 2010). Esta función en capas de base no será la que predomine, pero sí lo hará entre subbase y explanada.

$$P = \frac{B R + 2F \sin \beta}{B}; \quad F = f(\varepsilon, J)$$
(4)

$$B` = B + 2h \tan \alpha \tag{5}$$

Las diferentes investigaciones han ido derivando, a la par, en diversos métodos de cálculo de carácter más tecnológico. También algunas instrucciones o guías han incorporado su uso. Dentro de los métodos más extendidos están el de Giroud y Noiray, (Giroud & et al., 1981), éste con limitaciones en cuanto a ciertas propiedades de la explanada y Giroud y Han (Giroud & et al., 2004), más apropiado para el refuerzo de bases granulares y mejora de explanadas (NDOT, 2016). Guías como la AASTHO indican los beneficios del uso de geosintéticos pudiéndose efectuar cálculos indirectos a través de la quía (AAS-HTO, Guide for Design of Pavement Structures, 1993) incluyendo los beneficios del geosintético, con la inclusión del TBR (Traffic Benefit Ratio) y BCR (Base Course Reduction) mencionándose también otro parámetro como el PBR (Pressure Benefit Ratio) (NDOT, 2016), método también mencionado en el manual de geosintéticos de la FHWA (FHWA, 2008). También contempla estos cálculos la normativa del USACE (USACE, 2003), así como la normativa rusa (Росавтодор, 2003) y francesa (GTR, 2000), ésta limitada al uso de geotextiles sobre explanadas.

El refuerzo con geosintéticos se utiliza en carreteras pavimentadas permanentes en dos áreas de aplicación principales: el refuerzo de la base y la mejora de la explanada. En las aplicaciones de refuerzo de la base, los geosintéticos se colocan dentro o en la parte inferior de las capas no tratadas de un sistema de pavimento flexible y mejoran la capacidad de carga del pavimento bajo tráfico. En las aplicaciones de mejora de explanadas, los geosintéticos se utilizan para construir una plataforma de construcción sobre explanadas débiles (CBR ≤ 3) para permitir la circulación de los equipos y facilitar la construcción del sistema de pavimento sin deformaciones excesivas de la explanada (FHWA, 2008).

3. Métodos de cálculo.

3.1. Método de Giroud y Noiray (1981)

Este método supone que la presión del neumático se aplica sobre un área rectangular en la superficie y se distribuye de manera uniforme sobre áreas rectangulares progresivamente mayores con la profundidad. Las áreas de distribución están definidas por líneas que descienden alejándose de los cuatro bordes de la carga superficial. La pendiente de estas líneas, desde la posición vertical, se denomina ángulo de distribución de esfuerzos.

El diseño de este método se basa en el efecto de membrana del geosintético. El espesor requerido de la capa no reforzada se determina primero en función de la capacidad portante prevista del suelo bajo una carga dada (rango típico de aplicación para este método de diseño 30 KN/m² < c_u < 90 kN/m²). El método asume que:

 El material de la sub-base corresponde a un suelo homogéneo, al

- menos a una profundidad H_{min}, suficiente para el desarrollo de una zona plástica.
- La carga corresponde a un eje simple equivalente.
- El material de relleno tiene las propiedades necesarias para asegurar una distribución adecuada de la carga aplicada, lo que quiere decir un valor de CBR mayor a 80.
- La sub-base está saturada y tiene baja permeabilidad (prácticamente incompresible, y ángulo de fricción nulo).
- Las propiedades mecánicas del geosintético se describen por el comportamiento de este a la tensión-deformación.

La distribución de la carga se considera con una distribución piramidal, que es similar al método 2:1, cuando α o = 26.6° (recomendado a utilizar por Giroud y Noiray).

Cuando la sección está reforzada, se considera la reducción del espesor y se modifica el ángulo de distribución piramidal con respecto a la profundidad de la presión pec (ver Figura 9), aplicada en su superficie para las condiciones con y sin refuerzo geosintético, ecuaciones 6 y 7.

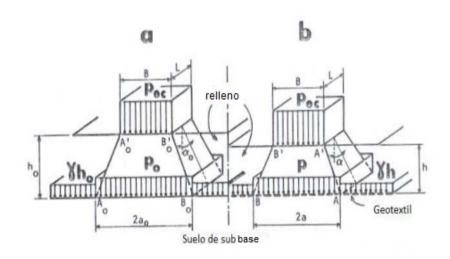


Figura 9. Distribución de la carga en la capa de base: (a) caso sin geosintético, (b) caso con geosintético

• Sin geosintético:

$$p_{ec} * L * B = (B + 2 * h_o * tan\alpha_o)(L + 2 * h_o * tan\alpha_o)(p_o - \gamma * h_o)$$
(6)

· Con geosintético:

$$p_{ec} * L * B = (B + 2 * h * tan\alpha)(L + 2 * h * tan\alpha)(p - \gamma * h)$$
(7)

Donde, haciendo referencia a la Figura 8:

- **B** y **L**: dimensiones del área de carga (m).
- **γ**: peso volumétrico del material granular (N/m³).
- h_o, h: espesor de la capa granular sin refuerzo geosintético y con refuerzo geosintético, respectivamente (m).
- a_o, a: ángulo de distribución piramidal de carga sin y con refuerzo geosintético (en grados).
- p_o, p: presión en la capa granular para la estructura sin y con refuerzo geosintético (Pa).

Para la condición sin refuerzo, la máxima capacidad de soporte q_e (8), correspondiente al límite elástico de la sub-base se puede determinar también como:

$$q_e = \pi c_u + \gamma h_o$$
 (8)

Donde la capacidad de soporte aumenta hasta la capacidad última q* en la condición reforzada es (ecuación 9):

$$q^* = (\pi + 2) * c_u + \gamma h$$
 (9)

c_u: cohesión no drenada del suelo sin fricción (Pa). Los autores también desarrollaron sus propios gráficos para facilitar el cálculo usando las ecuaciones anteriores; en los gráficos se recogen curvas para cada valor de resistencia superior (Ev2_{Sup} o CBR) requerido de la plataforma, en abscisas el módulo de compresibilidad inferior (Ev2_{Inf}), y/o CBR y en ordenadas el espesor del relleno necesario para alcanzar la resistencia superior requerida.

Para las soluciones reforzadas, para cada tipo de geomalla, se basan en ensayos realizados con la utilización de geosintéticos que presentan una tensión máxima al 2 % de deformación de 8 KN/m para determinar el espesor de la capa de relleno para estructuras reforzadas (para profundidades de huella de 7,5 cm a 10,0 cm).

3.2.Método de Giroud y Han (2004)

El método de Giroud y Han supone un área de contacto circular equivalente de la rueda y un área de presión circular en la sub-base. Por lo tanto, la superficie de distribución de esfuerzos forma un cono en lugar del trapezoide supuesto por el método G&N.

Este método establece el cálculo del espesor de pavimento necesario para que la carga aplicada no provoque el fallo de la subbase (10). Este método fue desarrollado a partir de un análisis semi-empírico, considerando la capacidad de

carga de la subbase y mediante la adopción de factores de corrección obtenidos de ensayos realizados en modelos de gran escala desarrollados en la Universidad de Carolina del Norte (EE.UU.). El método considera como parámetros de cálculo el Índice CBR de la base y de la subbase, el radio del área cargada, la deformación vertical admisible, el número de ciclos para el vehículo de diseño y la carga aplicada en la superficie.

El efecto dinámico de las cargas del tráfico es considerado mediante la determinación del ángulo de distribución de esfuerzos en la capa de base, adoptando una expresión empírica obtenida a partir del análisis de los resultados de ensayos cíclicos, en función del espesor de base, del radio del área solicitada, de la rigidez del refuerzo geosintético y de la relación entre los CBR's de los suelos de base y sub-base.

$$h = \frac{0.868 + \left(0.661 - 1.006 \cdot J^{2}\right)\left(\frac{r}{h}\right)^{1.5} \log N}{1 + 0.204(R_{E} - 1)} \times \left(\sqrt{\frac{\frac{r}{m \cdot r^{2}}}{\left(\frac{s}{f_{s}}\right) \cdot \left\{1 - 0.9 \cdot \exp\left[-\left(\frac{r}{h}\right)^{2}\right]\right\} \cdot N_{c} \cdot f_{c} \cdot CBR_{SL}}} - 1\right) \cdot r$$

$$(10)$$

Donde:

- h Espesor requerido (m).
- J Módulo de estabilidad de la abertura del refuerzo (mN/°).
- N Número de repeticiones por eie.
- P Carga aplicada por rueda individual (kN).
- r Radio equivalente del área de contacto neumático/pavimento (m) calculado por la expresión:

$$r = \sqrt{\frac{P}{\pi \cdot p}}$$

CBR_B CBR de la base.

CBR_{sı} CBR de la sub-base.

- Presión de inflado del neumático de diseño.
- **s** Deformación vertical permitida en el camino preferencial de rueda (mm).
- $\frac{P}{(\pi . r^2)}$ Presión de contacto del neumático (equivale a la presión de inflado aproximado).
- **R**_E Relación entre módulo de la base y el de la sub-base:

$$R_E = \min\left(\frac{3.48 \cdot CBR_{base}^{0.3}}{CBR_{SL}}, 5.0\right)$$

el valor máximo de R_E corresponde al menor valor entre la relación de los CBRs de la base y la sub-base y 5.0.

Esta relación debe ser verificada para posibilitar la compactación del material de la base de forma eficaz sobre suelos con baja capacidad de soporte.

Nc Factor de capacidad de carga variable en función de la presencia o no del refuerzo (US. Army Corps of Engineers, 2003).

Nc = 3,14 para estructuras no reforzadas

Nc = 5,71 para geomallas Nc = 5,14 para geotextiles de refuerzo

3.3. Método AASHTO 1993

En el proceso de diseño de pavimentos flexibles AASHTO 93 (AAS-HTO, Guide for Design of Pavement Structures, 1993), las cargas de tráfico, frecuencia, dirección, factores de carga de camiones, capacidad portante de la explanada, nivel de confianza, deterioro del pavimento, sistema de materiales en pavimento, espesor del material, capacidad de drenaje y la contribución estructural son todos considerados en el análisis. El objetivo del análisis es determinar el valor del número estructural requerido (SN) para el proyecto de apoyo al nivel previsto de tráfico. El SN se calcula multiplicando el espesor de capa individual (D), por los coeficientes estructurales (A), y coeficientes de drenaje (m) para cada capa de material. Luego se suma el valor de cada capa para conseguir un SN total para el pavimento flexible en su sección transversal.

$$SN = a1 \times D1 + a2 \times D2 \times m2 + ... + an \times Dn \times mn$$

El beneficio que proporcionará un geosintético se explica fácilmente en el cálculo de SN, incorporando un Coeficiente Estructural del Geosintético (GSC, Geosynthetic Structural Coefficient) en los cálculos. En EE.UU., un geosintético es usualmente colocado en la superficie de la explanada, por tanto, la ventaja estructural es típicamente aplicada a las capas base o sub-base colocadas y compactadas junto con el geosintético. Sin embargo, estudios recientes han mostrado que este sistema se beneficia de la incorporación de los geosintéticos en la sección transversal. Otras capas de pavimento (es decir, la superficie de asfalto y capas de base) reciben un beneficio similar a la capa construida directamente sobre el geosintético. El cálculo de SN para un pavimento flexible de dos capas que se construirá sobre un geosintético utilizando una base granular y una capa superficial bituminosa es el siguiente:

 $SNG = a1 \times D1 + a2 \times D2 \times m2 \times GSC$

El Coeficiente Estructural del Geosintético (GSC, Geosynthetic Structural Coefficient) es el factor de corrección usado en el diseño de pavimentos flexibles. Tiene en cuenta la contribución estructural de un geosintético específico en función de la resistencia del subsuelo, la carga de tráfico y otras variables específicas del proyecto. No es un valor constante y es diferente para cada geosintético calibrado según el método de diseño de pavimentos flexibles de la AASHTO 1993. El valor GSC se aplica a la capa del sistema de pavimento directamente por encima

del geosintético para los cálculos del número estructural (SN).

El estado de la práctica para el diseño de las capas de base reforzadas con geosintéticos en los pavimentos flexibles se ajusta a la Guía de la AASHTO para el Diseño de Estructuras de Pavimento (1993) y a la Norma AASHTO R 50-09 (2018) (AASHTO, Standard Practice for Geosynthetic Reinforcement of the Aggregare Base Course of Flexible Pavement Structures, 2009), antes denominada AASHTO PP 46-01 (2001). Tiene una base empírica y modela el pavimento flexible como una serie de capas que tienen una capacidad estructural combinada para soportar un cierto número de cargas de tráfico (ESAL's) con niveles mínimos predeterminados de serviciabilidad y confianza estadística. Basado en la guía de diseño de la AASHTO, 1993, la contribución estructural global del refuerzo geosintético se considera en el diseño a través de cualquiera de los siguientes factores que se derivan de datos empíricos específicos del producto:

- Ratio de Beneficio de Tráfico (TBR, Traffic Benefit Ratio): es la relación entre el número de aplicaciones de carga necesarias para alcanzar un estado de fallo específico en un pavimento reforzado con geosintéticos y el número de aplicaciones de carga necesarias para alcanzar el mismo estado de fallo en una sección no reforzada (es decir, la misma sección de pavimento, pero sin refuerzo).
- Factor de reducción de la capa de base (BCR, Base Course Re-

duction factor): reducción porcentual del espesor del material de la base o subbase en un pavimento reforzado en comparación con uno no reforzado, dado que la capacidad de tráfico para un estado de fallo definido sigue siendo la misma.

La norma AASHTO R 50-09 (2018) proporciona directrices para el diseño de capas base reforzadas con geosintéticos en pavimentos flexibles. Las directrices son de naturaleza empírica y los pasos de diseño siguen un procedimiento que fue reportado inicialmente por Berg et al. (2000).

En la Guía de la AASHTO de 1993. el diseño del pavimento se basa en una referencia a la capacidad de servicio del sistema de pavimento expresada a través de mediciones de rugosidad y diferentes tipos de deterioro (agrietamiento, ahuellamiento, etc.). La capacidad de carga de un pavimento se expresa con el número de cargas axiales estándares equivalentes (ESAL) a las que la deformación permanente en la superficie alcanza un valor específico (profundidad de rodera permitida). El número de cargas axiales estándares equivalentes (ESALs) se calcula utilizando la ecuación de la AASHTO, 1993, que se muestra a continuación.

Usando la ecuación 11, la Relación de Beneficio de Tráfico (TBR) puede ser aplicada directamente al número calculado de ESALs o puede ser usada para ajustar el número estructural. El Factor de Reducción de la Capa Base (BCR) se utiliza para reducir directamente el espesor requerido de la capa base no reforzada.

W18 = Tráfico admisible (ESAL's)

ZR = Desviación normal estándar; basada en la Tabla 4.1 de la parte I de las directrices de la AASHTO (1993), para una fiabilidad del 95%, la desviación normal estándar.

ZR = -1,282.

So = Desviación estándar = 0,49

SN = Número estructural

ΔPSI = Cambio en el índice de servicio actual

MR = Módulo resiliente de la subbase o base considerada (psi)

3.4. Método Empírico-Mecanicista (AASHTO, 2020)

Una iniciativa importante en el ámbito del diseño de firmes fue la decisión de la AASHTO de desarrollar y, posteriormente, adoptar un método empírico-mecanicista para el diseño de sistemas de firmes. La iniciativa fue concebida a principios de los años 90 y dirigida por los comités de la AASHTO con la ayuda de instituciones de investigación. La AASHTO publicó en 2008 la primera edición de la Guía de Diseño Empírico Mecanicista de Firmes (MEPDG, del inglés Mechanistic-Empirical Pavement Design Guide). El método empírico-mecanicista para el diseño de sistemas de firmes ha ido ganando impulso en las últimas décadas, v el concepto fue incluido en la Guía de Diseño de Firmes de la AAS-HTO 1993, publicándose la tercera edición en 2020 (AASHTO, Mechanistic-Empirical Pavement Design

$$\log_{10}(W_{18}) = Z_R S_o + 9.36 \log_{10}(SN+1) - 0.20 + \frac{\log_{10}\left[\frac{\Delta PSI}{4.2 - 1.5}\right]}{0.40 + \frac{1094}{(SN+1)^{5.19}}} + 2.32 \log_{10} M_R - 8.07$$
(11)

Guide-A Manual of Practice-, 2020) junto con el software AASHTOWare Pavement ME Design.

Los principales pasos del ME-PDG son:

- Selección de la estructura del pavimento (capas, tipo de materiales, espesores).
- Caracterización del clima, el tráfico y los materiales para la ubicación específica del proyecto.
- Análisis del modelo mecánico de la estructura del pavimento.
- Cálculo de las respuestas críticas (tensiones, deformaciones).
- Evaluación de los daños acumulados y de las dificultades asociadas con referencia a los criterios preestablecidos.
- El diseño puede requerir varias iteraciones considerando diferentes estructuras de pavimento

El diseño se completa cuando, para una sección específica, los niveles de deterioro no superan los niveles aceptables para la vida útil de la estructura.

Los componentes importantes del método MEPDG son: (1) un modelo mecánico para calcular las respuestas críticas del sistema, y (2) modelos empíricos de comportamiento o de daños que relacionan las respuestas críticas con los niveles de daños y de fatiga acumulados.

Los modelos de deterioro son el otro componente principal de la solución basada en la M-E y relacionan las respuestas críticas con los niveles de daño y avería acumulados. El desarrollo de los modelos de deterioro requiere secciones instrumentadas a escala real que sean transitadas hasta el fallo.

En concreto una serie de investigadores, patrocinados por la

AASHTO, están realizando ensayos sobre probetas a gran escala, con amplia instrumentación, en pavimentos flexibles y rígidos, para poder evaluar características distintivas del geosintético que consideran esenciales para la modelización adecuada del material y, en última instancia, para mejorar las predicciones del comportamiento de los pavimentos con capas base reforzadas. Hasta el momento, los resultados son para una serie de materiales geosintéticos muy concretos y tan solo reseñables los resultados para pavimentos flexibles.

4. Conclusiones

Este artículo expone los puntos más relevantes del uso de los materiales geosintéticos en el refuerzo de bases y mejora de explanadas, intentando mostrar que desde el diseño hasta la puesta en obra debe "visualizarse" el conjunto geosintético - suelo como un material compuesto y no como dos materiales individuales.

Para un diseño adecuado, se deben tener en cuenta tres factores importantes: naturaleza y características mecánicas del suelo, naturaleza y características mecánicas del geosintético e interacción suelo-geosintético.

El uso de los geosintéticos para el refuerzo de bases y mejora de explanadas es una técnica sostenible que permite diseños alternativos, utilizando suelos o materiales granulares de calidad inferior, consiguiendo así una optimización de los recursos naturales que permitieran un comportamiento idóneo del conjunto.

Para el caso concreto del refuerzo de bases y mejora de explanadas y teniendo en cuenta las condiciones de contorno, se pueden indicar tres mejoras principales con el uso del geosintéticos:

- Restricción lateral entre base y subbase: reducción de las deformaciones laterales por efecto del geosintético, mediante fricción (geotextiles) o soporte interlock (geomallas). Esta función es la principal en esta aplicación.
- Aumento de la capacidad portante del conjunto: analizando el mecanismo de rotura de un suelo mediante carga distribuida vertical se pueden establecer las zonas de mayor cortante dentro de los materiales. Así en una situación sin geosintético la línea rotura conformada por los tramos rectos (estados activos y pasivos) y la espiral logarítmica (zona de plasticidad radial) dependerá de la carga, y propiedades del suelo, cohesión y ángulo de rozamiento interno, c y Φ. La inclusión del geosintético hará que la línea de rotura se vea modificada, reduciendo la zona plástica.
- Efecto membrana: establece una separación entre los materiales y mejora la capacidad de distribución del esfuerzo vertical.

5. Bibliografía

- AASHTO. (1993). Guide for Design of Pavement Structures. American Association of State Highway and Transportation Officials.
- AASHTO. (2009). Standard Practice for Geosynthetic Reinforcement of the Aggregare Base Course of Flexible Pavement Structures. Association of State Highway and Transportation Officials.
- AASHTO. (2020). Mechanistic-Empirical Pavement Design Guide-A Manual of Practice-. AASHTO.
- Barry R., C. (2010). Geogrids in roadway and pavement systems.
- Cuelho, E., Perkins,S. and Morris,Z. (2014). FHWA/MT-14-002/7712-251, Relative Operational Performance of Geosynthetics Used as Subgrade Stabilization. MDT Montana Dept of Transportation.
- Cuenca Payá, A. (s.f.). APLI-CACIONES DEL ENSAYO TRIAXIAL. Departamento de Ingeniería de la Construcción. Universidad de Alicante.
- FHWA. (2008). FHWA NHI-07-092: Geosynthetic Design & Construction Guidelines. FHWA.
- 8. Giroud, J., & et al. (2004). Design method for geogrid-reinforced unpaved roads. I: Development of design method. Journal of Geotechnical and Geoenvironmental Engineering.
- Giroud, J., & et al. (1981).
 Geotextile Reiforced Unpaved Road Design. ASCE Journal Geotechnical Journal.

- 10.GTR. (2000). Guide Techinique Réalisation des remblais et couches de forme. LCPC.
- 11.Haliburton, T., & et al. (1981). The Use of Engineering Fabrics in Transportation Related Applications. Final Report under Contract No. DTFH-80-C0094. Federal Highway Administration.
- 12.Jewell, R. (1980). Some effects of reinforcement on soils. PhD. Thesis, University of Cambridge.
- 13. Koerner, R. (1998). Designing With Geosynthetics. Prentice-Hall Inc., Englewood Cliffs.
- 14. Little, P. (1992). TD: The design of unsurfaced roads using geosynthetics. University od Nottingham.
- 15.McGown, A., & et al. (1981). Strain behaviour of soil-fabric model embankment. 10 th Int. Conference Soil Mech. Fdn. Engng., (págs. 739-744 vol.3). Stockholm.
- 16.NDOT. (2016). Use of GEOGRID for Strengthening and Reducing the Roadway Structural Sections. Nevada Department of Transportation.
- 17. Palmeira, E. (1987). The study of soil-reinforcement interaction by means of large scale laboratory tests. PhD. University of Oxford.
- 18. Росавтодор. (2003). Recomendaciones de uso materiales geosintéticos en construcción y reparación carreteras. Moscú: .
- 19.USACE. (2003). Use of Geogrids in Pavement Construction.U.S Army Corps of Engineers.Department of Army.
- 20.Ziegler, M. (2017). Application of geogrid reinforced constructions: history, recent and future developments. Precedia Engineering, 42-51. ❖