

Determinación por láser del tamaño de partícula del glóbulo de betún en emulsiones

N la reunión que el Comité Técnico Internacional de AEMA (Asphalt Emulsion Manufacturers Association), Asociación que agrupa a los principales fabricantes de emulsiones asfálticas del mundo, celebrada en S. Louis el pasado año 88, se consideró que el primer tema que debería abordar el Comité de "Intercambio de Tecnología" en la misma creado, fuese la recopilación de las especificaciones europeas de emulsiones para poder conocer los criterios empleados y exigencias requeridas y así, poder comparar en trabajo posterior, con las normativas empleadas en USA.

En este trabajo se recogen las especificaciones vigentes en los países europeos más avanzados en la tecnología de emulsiones, comentando las distintas metodologías empleadas para caracterizar la calidad de las emulsiones, tipo de ensayos, metodología de realización,

límites de calidad, etc.

Tipos de emulsiones

Recopiladas las especificaciones de emulsiones bituminosas de diferentes países europeos –Francia, Alemania, Suiza, Bélgica, Noruega, Suecia, Finlandia, España, Portugal e Italia–, en el cuadro I se han resumido los tipos de emulsiones normalizadas, según su naturaleza aniónica o catiónica, velocidad de rotura y concentración de ligante.

De su observación se desprende que todos los países europeos tienen normalizados dos tipos de emulsiones (aniónicas y catiónicas), a excepción de aquéllos que, por su climatología, consideran inadecuado el uso de las aniónicas; tal es el caso de los países escandinavos.

De manera general, los países clasifican sus emulsiones según su estabilidad en emulsiones de rotura rápida, media y lenta, a excepción de Francia, que incluye otro grupo: las denominadas superestables, que no quedan definidas, como el resto de las emulsiones, por su índice de rotura con filler patrón, sino por su estabilidad frente al cemento.

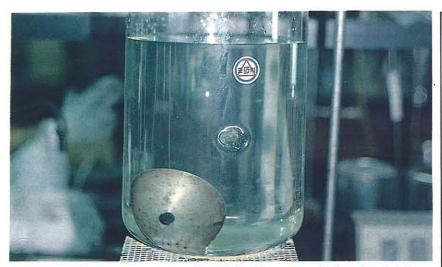
e su observación se desprende que todos los países europeos tienen normalizados dos tipos de emulsiones (aniónicas y catiónicas), a excepción de aquéllos que, por su climatología, consideran inadecuado el uso de las aniónicas.

Dentro de cada uno de estos tipos (rápidas, medias y lentas), se
establecen unas diferencias basadas, generalmente, en la viscosidad de la emulsión, propiedad íntimamente relacionada con el
contenido en ligante, así como
con el mayor o menor contenido
de fluidificante, e incluso, en las
características del betún residual,
todo ello muy relacionado con el
tipo de aplicación a realizar.

España es el único país europeo que tiene normalizados dos tipos de emulsiones especiales, aniónicas y catiónicas, para ser empleadas en riegos de imprimación, en sustitución de los cutback MCO, cuyo empleo se desaconseja por razones económicas y de medio ambiente.

Es España también el único país europeo que ha desarrollado las emulsiones aniónicas de reología modificada (High Float Emulsions), muy empleadas para la fabricación de mezclas abiertas en frío con áridos calizos.

En lo que respecta a emulsiones de betún-polímero no existen especificaciones especiales, a pesar de que son muy empleadas en Francia, generalmente en tratamientos superficiales en carreteras de elevada intensidad de tráfico, y en España en tratamientos superficiales, mezclas abiertas y microaglomerados en frío. Responden a procedimientos de las propias empresas, pues aún no se ha fijado normativa oficial para las mismas. Ha sido Bélgica el primer país europeo que ha normalizado éstas, distinguiendo dos tipos: las emulsiones de betún-elastómero y las de betún-plastómero, diferenciación que, como puede verse, en su cuadro correspondiente, viene determinada por las distintas características elastoméricas de sus residuos, en el ensayo de retorno elástico.


Analisidad de los diferentes parámetros de las especificaciones

Analizando los ensayos que sirven para caracterizar las emulsiones, podemos obtener las siguientes conclusiones:

Viscosidad

La importancia que este parámetro tiene en cuanto a un correcto comportamiento de la emulsión en los diferentes campos de aplicación, su mayor o menor facilidad de aplicación, etc., hace pensar que en todos los países, a excepción de Bélgica en las emulsiones catiónicas, tengan especificado este ensayo para sus emulsiones, aunque como puede verse

Esta comunicación fue presentada en el XVI CONGRESO AEMA (DA-LLAS), en Marzo de 1989.

Ensayo de flotación para caracterizar la consistencia de ligantes

en los cuadros 2 y 3, no existe una normativa común para la determinación de esta característica.

Así, mientras que países como Inglaterra, Bélgica (aniónica), Alemania e Italia, determinan la consistencia de las emulsiones mediante el viscosímetro Engler, España y Portugal hacen uso del viscosímetro Saybolt Furol a 25.º C. ó 50.º C., Francia determina la pseudoviscosidad a 25.º C. en centistokes, y Noruega y Finlandia utilizan el Standard Tar Viscosimeter (STV) con orificio de 4 mm para la determinación de la consistencia de las emulsiones.

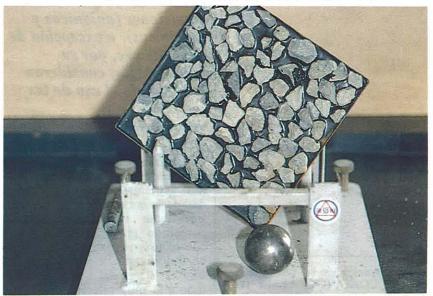
Contenido en ligante

Ensayo que se especifica en todos los países, y que al igual que en el de viscosidad no hay homogeneidad de criterio para su realización. En algunos países se determina como el residuo que resulta de destilar la emulsión hasta 260.º C., en otros como el residuo procedente de la evaporación de la emulsión a 160.º C. e, incluso, determinando previamente el contenido de agua y calculando el contenido en ligante residual por diferencia. Con este último procedimiento, salvo que se trate de emulsiones bituminosas exentas de fluidificantes, es decir, emulsiones de betún puro, no se determina el contenido de betún residual, sino el de ligante residual (mezcla de betún residual más los posibles fluidificantes que pueden llevar las emulsiones). Presenta la ventaja de su rapidez pero nada nos dice del posible contenido de fluidificantes.

En España figura normalizado tanto el contenido de agua, determinado por el ensayo de Dean Stark para conocer el contenido en ligante de manera rápida, así como la destilación hasta 260.º C. para determinar cuantitativamente los posibles fluidificantes, el contenido de betún residual y, si se considera necesario, caracterizar posteriormente éste.

Naturaleza

Sigue sin haber unanimidad de criterios en los ensayos. Mientras que en países como Noruega, Finlandia y Suecia, la determinación de la naturaleza (aniónica o catiónica) no se especifica, explicable en el caso de los Países Escandinavos que especifican nada más que un tipo de emulsión (catiónicas), no se entiende que países como


l contenido de ligante en algunos países se determina como el residuo que resulta de destilar la emulsión hasta 260.º C., en otros como el residuo procedente de la evaporación de la emulsión a 160.º C.

Italia y Alemania, que contemplan ambos tipos, no tengan metodología para su diferenciación.

Entre los países que sí determinan esta característica, algunos emplean el método de electroforesis de carga de partículas (España, Portugal –sólo aniónicas–Francia), mientras que otros, como Bélgica, diferencian una emulsión de otra por el valor del pH.

Tamizado

Como medida rápida de la comprobación de la presencia de grumos, indicadores siempre de mala calidad de emulsión y producidos, en su mayor parte, por un mal funcionamiento del molino, trabajar a temperatura incorrecta o formulación inadecuada, los diferentes países suelen realizar el ensayo del tamizado, bien por uno o dos tipos de mallas, cuya apertura varía entre 0,16 a 0,63 mm, limitan-

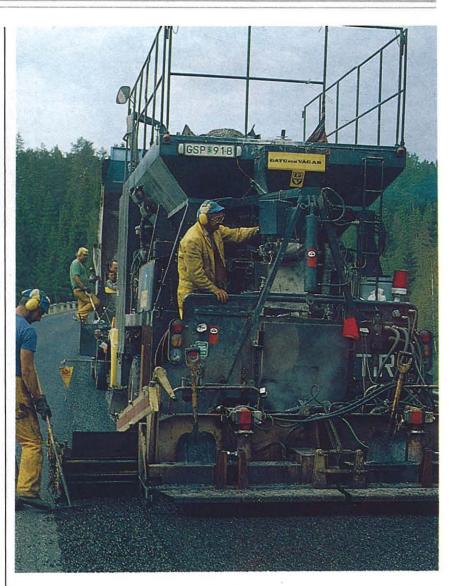
Ensayo de adhesividad ligante/árido

do el valor retenido, que varía según los distintos países.

Finlandia limita a un máximo del 0,2% para tamiz de 0,5 mm; al 0,4% con tamiz de 0,4 mm en Italia; y en el resto 0,1% para tamices de 0,16 mm, excepto en Francia que determina la homogeneidad por el porcentaje de partículas superior al tamiz de 0,6 mm, ó al porcentaje de partículas comprendidas entre 0,16 mm y 0,63 mm con valores máximos de 0,1 y 0,25 respectivamente.

Estabilidad al almacenamiento

Diferentes criterios siguen los países europeos para la medida de esta característica.


Italia distingue entre estabilidad de la emulsión y sedimentación. La medida de esta última la realiza a tres y siete días para todos los tipos de emulsiones, mientras que la estabilidad la realiza a siete días y dos meses únicamente para emulsiones básicas de rotura rápida y media.

En Francia está normalizado el ensayo de estabilidad al almacenamiento únicamente para emulsiones catiónicas, distinguiendo aquellas emulsiones de almacenamiento limitado a quince días (rápidas y semi-rápidas) de las emulsiones almacenables (semi-rápidas, lentas y superestables), que pueden llegar a un período de almacenamiento máximo de hasta tres meses.

Suecia al igual que Francia, considera que la estabilidad de almacenamiento de emulsiones catiónicas de rotura rápida debe ser

Empleo de emulsión de Rotura Controlada en microaglomerado en frío (Autopista Italiana)

Empleo de emulsión de Rotura Media en mezclas bituminosas en frío (Suecia)

realizada después de un período de almacenamiento de siete días, mientras que las otras emulsiones, más estables, de rotura media o lenta, deben ser almacenables al menos veintiocho días.

a especificación inglesa define también dos tipos de estabilidad al almacenamiento, uno inmediato (mediante centrifugación) y otro más largo (tres meses, por diferencia de contenido en agua).

La especificación inglesa define también dos tipos de estabilidad al almacenamiento, uno inmediato (mediante centrifugación) y otro más largo (tres meses, por diferencia de contenido en agua).

En el resto de los países, el ensayo de estabilidad al almacenamiento lo realizan, igualmente, mediante el ensayo de sedimentación, en períodos de tiempo variables, entre tres y siete días.

Velocidad de rotura

Muy diferentes son los criterios que se siguen en cuanto a la determinación de este parámetro. Así, mientras que países como Francia, Noruega, Finlandia o Suecia, lo determinan mediante el Indice de rotura con filler, el resto de los países sólo diferencian las emulsiones lentas del resto, en función

Empleo de emulsión de Rotura Lenta en estabilización de arenas (Venezuela)

de que cumplan o no los mínimos establecidos de mezcla con cemento para la emulsión de rotura lenta, o su demulsibilidad con Cl2 Ca (aniónicas) o dioctilsulfosucinato sódico para las catiónicas (Portugal).

Italia, Inglaterra o Alemania no hacen una especial distinción en lo que se refiere a esta caracterización, y Suiza emplea un ensayo de rotura midiendo el tiempo de envuelta de la emulsión con un árida tipo

En España no hay un ensayo definido para medir la velocidad de rotura, aunque los fabricantes de emulsiones se caracterizan por mantener contacto permanente con los constructores, fabricando la emulsión "a la medida" del árido a emplear, adaptando la formulación al tipo de árido y obra a realizar

Adhesividad a los áridos

No es contemplado este ensayo en las especificaciones europeas

de emulsiones. Portugal y España lo recogen en sus normativas exclusivamente para emulsiones de rotura media, tanto aniónicas

n España no hay un ensayo definido para medir la velocidad de rotura, aunque los fabricantes de emulsiones se caracterizan por mantener contacto permanente con los constructores, fabricando la emulsión "a la medida" del árido a emplear, adaptando la formulación al tipo de árido y obra a realizar.

como catiónicas, de aplicación en la fabricación de mezclas abiertas en frío.

Francia incluye también este ensayo, pero solamente para emulsiones catiónicas de rotura rápida, media y lenta, advirtiendo que siempre que se hable de adhesividad hay que referirla a un árido de naturaleza definida.

Ensayo sobre el residuo

Salvo en el caso de Inglaterra y Francia, que no caracterizan el residuo, en el resto de los países sí se efectúa, siendo obligado realizar el ensayo de penetración, complementándose con otros ensayos que varían de unos países a otros. Así, con solubilidad en disolventes orgánicos y ductilidad (España, Italia y Portugal), solubilidad (Bélgica, Finlandia), con determinación de viscosidad cinemática (Suecia y Noruega), con punto de reblandecimiento e índice de penetración (Suiza).

Italia normaliza únicamente el ensayo de solubilidad del residuo cuando se trata de emulsiones catiónicas, mientras que para las aniónicas tienen normalizada ductilidad, punto de reblandecimiento y temperatura de fragilidad Fraas.

Los residuos suelen poseer penetraciones que oscilan entre valores de 50-250 décimas de milímetro, aunque en algunos países nórdicos (Noruega y Finlandia) existen emulsiones que pueden

para cualquier tipo de emulsión, sea aniónica o catiónica.

En Italia tenen normalizada otra exigencia, no recogida en ningún otro país: contenido en emulgente seco.

Emulsiones de Betún Modificado

Capítulo aparte merece el·tema de las emulsiones de betunes modificados; que siendo emulsiones ampliamente empleadas en España y Francia, como ya se ha ditún-elastómero y dos con betúnplastómero.

Los ensayos que se deben realizar a estas emulsiones, para su caracterización, son muy similares a los de las emulsiones normales, salvo en lo que respecta a algunas modificaciones en el método de recuperación del ligante residual, muy similar al método Californiano T/-332, especialmente en lo que atañe a ciertas precauciones a tomar para impedir la degradación térmica del polímero.

Uso de emulsión de Rotura Rápida en tratamiento superficial (España)

llegar a las 300 décimas de milímetro, y en otros, caso de España y Portugal, pueden fabricarse emulsiones con betunes muy duros 40 (x 0,1 mm) de penetración para ser utilizadas en tratamientos de Slurry Seal en zonas cálidas.

Otros Ensayos

En algunos países se especifica el comportamiento de las emulsiones a baja temperatura, dándose el caso curioso de que mientras que en Italia se normaliza el ensayo de resistencia al hielo únicamente para todas las emulsiones aniónicas, a excepción de las de rotura lenta, Inglaterra lo exige

cho, pueden considerarse formulaciones de empresa que no están aún recogidas en especificaciones oficiales, aunque en Francia está a punto de salir una tentativa de especificación únicamente para emulsiones de rotura rápida de aplicación en tratamientos superficiales en carreteras de tráfico elevado.

Bélgica hasta el presente, es el único país europeo que oficialmente tiene especificadas estas emulsiones, dándose el caso de que frente a tres emulsiones clásicas de betún puro, han normalizado cinco emulsiones catiónicas de betún polímero, tres a base de be-

Se incluyen algunos ensayos específicos como el de la determinación de la ductilidad a 5.º C., que a esta temperatura, puede considerarse como un ensayo de tracción que permite comparar entre sí ligantes y conocer si llevan o no elastómeros.

Se especifica igualmente el ensayo de rotura elástica, que tiene por misión el poner en evidencia la elasticidad y ver, por tanto, la eficacia del elastómero añadido al betún. Se trata de un ensayo equivalente al Californiano T/-332, específico de las emulsiones de betún-elastómero.

EMULSIONES ASFALTICAS

	AL	EM	BE	LG	ESPA	ÑA	FR	AN	IN	GL	ITA	LIA	NC	RG	POI	RTG	SU	IZA	US	A	FIN	ILD	SUE	CIA
TIPO EMULSION	A	С	A	С	A	C	A	С	A	С	A	С	A	C	A	C	A	C	A	С	A	C	Α	С
State of the state of	55		*	*	50	50	50	17.7	38	38	50	OF S	. Si II	50	10	P. III	50	50	1474	12.3	1277	11	1000	50
	1944()	13625	5-07		55	55	1777				15	1000	P		11	- 22	50 55	50 55	55	9	20	1	100	
	55	112 31	55	65	60	60	55	60	53	57	55	55		60	55	57							134	60
ROTURA	55	60	14	-311	60	62	60	65	58	67	60			65	63	63	60	60	63	63	65	60		
RAPIDA		30-50	- 1		65	67	15										68	68	63HF	68		65		7.5
	60				66HF	68	65	69																65
		-34		,					48					65	55				55			-		
	55		*	*						1		1000		67				100	65		400			60
	PA		55	65	69HF	2111		60	55	57				67		100		10	65			63		2012
ROTURA	SOU	65	115	1 1/				65	SHO	1714	55	55	5 1	69	65	57	60	60	55HF					60
MEDIA	er ni	1 54				114		2	1		-			69		DEL			65HF					
And the second of	- 1-		100	-	67			(0				-				(2)			65HF					15
						71		69								63		-	72HF	77				65
						71																		
HE STATE STATE			*	*			55	55	55				- >											
	8 3	LE CI			60	57	60	60	56	56				57	57	57		R-S	57	57	2			
ROTURA	الشيا	100(2)	55	65							55	60	25		57	57	60	60	57	57				
LENTA	55				- (0	65	65	65		- 1					1						- 4	65		60
Charles Control					63		باست			100			42			10.75								
SUPER						-	55	55																
ESTABLE							60	60																

A - ANIONICAS C - CATIONICAS

* Sólo especifica 3 emulsiones tipos A, B y C siendo sus únicas diferencias la viscosidad y penetración del residuo.

- Los valores indicados son considerando el valor máximo de fluidificantes posibles, a excepción de las que tienen un alto contenido máximo, en las cuales se ha tomado un valor medio.

	ESPECIFICADO	313	PORT	ITAL	NORG	INGL	FRAN	ALEM	SUIZ	ESPÑ	USA	BELG	FINLD	SUEC
1		S. Furol	0		- 2					0	0			
	Miccocharp	STV			- 0						, i			0
	VISCOSIDAD	Engler Redwood		0	-	0		0	0			4.0		
	25.° C	cST.	-			0	0		-		-		0	
= 111		Poises	*		CONT. I				0	294,000				
	CARGA DE PARTICULAS		0		OF THE	0	0		0	0	0			ALCOHOL:
	pH.				(Carried)		13 5 8					0		Ent.
0.00	TAMIZADO	a 0.63	0	0	0	0	0	-0		0	0			0
		0.16 a 0.63				0	0					200	L. Control	-
6 = 1	ESTABILIDAD AL			0	2 1-11	0	0	The Table	COLUMN TO	3000	0		MORE DESIGNATION	Seller Sell
1	ALMACENAMIENTO		ATTENDED AT	7d			U				O			
S		3		0										
S	SEDIMENTACION	3 7	0	0		0		0	-0	0			0	0
EMULSIONES CATIONICAS														
5	MEZCLA CON CEMENTO		0		MARKE	_ 09	0			991	0	St Hi	1953	11 0= [
	HOMOGENEIDAD	A	Stille 1	0	0			arnel .	- Hara	-1-		a trans	17.5	THE PARTY
<	HELADICIDAD	12 1	THE PARTY OF	-	energy by	0	No. of the	make 1		Land Si	100			les .
0	ENVUELTA ARIDOS	seco	0					0		0	0			
ES		húmedo	0					0		0	0			
Z	DEMULSIBILIDAD		0	E.LEN		1146	o de	IN C	100	1110111	3 370	ETENIO -	J. 479	PE 40 1
2	ROTURA		n i i		0		0		0		L M	TODAY	0	0
S	RESIDUO EVAPORACION	O PERSONAL PROPERTY.	00 ° 6	0	- 0	19E 1	0	LUCSUI I	0		Party -	N 150 E	0	U
2	CONTENIDO DE AGUA			U			0		0	0	1.424.75	0		
2	CONT. EMULG. SECO			0			- 0		0	- 0		0		
		Agua		0								-		-
Same.	DESTILACION	Flux.	0		0		1,411			0	0		0	0
		Resid.	0	0	0	0		0	5-1111	0	0	TENT O	0	0
2015	ESTABILIDAD 4 6 8 SEMA	NAS	13 39	21000	0 TOT 127	WINE !	0		The more	L OIL	25 0	THE PARTY	11-0-12	<u> </u>
	ADHESIVIDAD	margin in	alterior in	-04T8	4400	0	100	Mary			10000	-		
110	ENSAYO SOBRE RESIDUO													
1 7	PENETRACION		0		0		-	0	0	0	0	0	0	0
	P. REBLANDECIMIENTO				24 THE	-	BALCITE	17371-2	0	E- 7811	her (Tital	II TE X	Sto. I	260
	VISCOSIDAD		1851	CHES!	0	26 6	officer i	912	- W 100	n ola	ri be	L'ampli	distant of	0
	INDICE DE PENETRACION		LESS STORY	CELEBIA.	man av	THE PE	1-1-1	200	0	Shiran	Laur In	- Out		
	DUCTILIDAD		0							0	0			
	SOLUBILIDAD		0	0			The state of	FIDE	100	0	0	0	0	0
	DENSIDAD		100 A.C	11/21	al cold to		THE I		THEFT	109 1		o	TENEST I	LIGON

	ESPECIFICADO	To Water	PORT	ITAL	NORG	INGL	FRAN	ALEM	SUIZ	ESPÑ	USA	BELG	FINLD	SUEC
	VISCOSIDAD	S. Furol STV Engler Redwood cST. Poises	0	0		0	0	0	0	0	0	0		
	CARGA DE PARTICULAS pH.					0	0	in s	0	0				
	TAMIZADO	a 0.63 0.16 a 0.63	0	0		0	0	0	0	0	0	155		
	ESTABILIDAD AL ALMACENAMIENTO			10		0					0			
10	SEDIMENTACION	3 7	0	0		771.55		0	0	0				
ANIONICAS	MEZCLA GON CEMENTO HOMOGENEIDAD HELADICIDAD		0	0		0	0	0		0	0			
ANIC	ENVUELTA ARIDOS	seco húmedo	0	0		0	-3	0	0	0	0			
EMULSIONE'S	DEMULSIBILIDAD ROTURA		0			Lo				0	0			Chille.
SIO	RESIDUO EVAPORACION						0		0					- 610
MU	CONTENIDO DE AGUA CONT. EMULG. SECO			0			0		0	0	Neg.	0		14-17
E	DESTILACION	Agua Flux. Resid.	0	0		0		0	0					
	ESTABILIDAD 7 DIAS ESTABILIDAD 2 MESES			0				0						
	ENSAYOS SOBRE RESIDU FLOTACION a 60.º C	0		4						0	0	The state of		
	P. FRAAS PENETRACION		0	0				0	0	0	0			
	P. REBLANDECIMIENTO VISCOSIDAD		0	0				0	0	0	0			
	INDICE DE PENETRACION DUCTILIDAD		0	0					0	0	0			
	SOLUBILIDAD DENSIDAD		0	0						0	0	0		

	ESPECIFICADO	1.50	PORT	ITAL	NORG	INGL	FRAN	ALEM	SUIZ	ESPÑ	USA	BELG	FINLD	SUEC
	VISCOSIDAD	S. Furol STV Engler Redwood cST. Poises												
	CARGA DE PARTICULAS		T. S. T. T.							20000			194991	A PITTLE
100	pH.						- 53		N. N.		100	0		
DO	TAMIZADO	a 0.63 0.16 a 0.63												
EMULSIONES DE BETUNES MODIFICADOS	ESTABILIDAD AL ALMACENAMIENTO	Mile.			4/4									
TOL	SEDIMENTACION	3 7												
NES N	MEZCLA CON CEMENTO HOMOGENEIDAD													
5	HELADICIDAD							7	4 - 3/					1
BET	ENVUELTA ARIDOS	seco húmedo					Con 191					719.1		
S DE	DEMULSIBILIDAD ROTURA			Jan 1										
H	RESIDUO EVAPORACION						77 55				7			
6	CONTENIDO DE AGUA								1			0		
SI	CONT. EMULG. SECO		ditte of		and the N		4							
MUL	DESTILACION	Agua Flux. Resid.												
1	ENSAYOS SOBRE RESIDUO		15 U.S.	STILL	F-24-50							Elas. Plas		
	RETORNO ELASTICO	the same	N. F.	- 1 - 1 - 1	AN CAR		1	14.			15.53	0		
	FRAAS						1 2 3					0 0	to FE	Eliza.
	PENETRACION			EL.	- 12.3	218						0 0		
	P. REBLANDECIMIENTO											0 0		- 1
	VISCOSIDAD											0	- 10	
	INDICE DE PENETRACION													
	DUCTILIDAD						-	1		1000		0 0		
1 - 1	SOLUBILIDAD		2								5			
	DENSIDAD	A CONTRACTOR OF THE PARTY OF TH		Nie in				100						

ESPAÑA EMULSIONES CATIONICAS

Norma EC/84

CARACTERISTICAS		Norma de				1			T	IPOS			700		1	N. W.
CARACTERISTICAS		Ensayo	ECR		ECR		ECR		ECR			M	ECI		ECL	
		NLT	Min.	Máx.	Mín.	Máx.	Min.	Máx.	Min.	Máx.	Min.	Máx	Min.	Máx.	Min.	Máx.
Viscosidad Saybolt		138/84					T			7 79	199-1	100				
Universal a 25.º C				100					- 3	-					VI I	
Furol a 25.º C	S					50			1000	1000	5			100	1.31	50
Furol a 50.º C							20		50	19.00	20					
Carga de partículas	1	194/84	posi	itiva	posi	tiva	pos	itiva	posi	itiva	pos	itiva	pos	itiva	posi	tiva
Contenido de agua (en volumen)	%	137/84		53		43		38		33		35		45	1000	43
Betún asfáltico residual	%	139/84	43		57		62		66	1-1-	59	TO B	55		57	191
Fluidificante por destilación	1000											1	1 1	8000	015	
en volumen)	%	139/84		7		5		5		2	1, 9	12		10	6-1	0
Sedimentación (a los 7 días)	%	140/84		10		5		5		5	I to a L	5	009	5		5
Tamizado (retenido en el tamiz									H					T		
0,80 UNE)	%	142/84		0,10		0,10		0,10		0,10		0,10	LONG.	0,10		0,10
Envuelta y resistencia al desplazamient	0	196/84									II.		10000			ALC:
por el agua:	3 3 1				2				1			3.00	13.0		Section 1	
Envuelta árido seco			-	· E 1	_		-		-		Bue	na	Bue	ena	-	
Envuelta árido después del riego	3000		-		_		-	-	-		Acer	table	Acer	table	-	
Envuelta árido húmedo			-)=	-	-	-	-	1 1	Acer	table	Acer	table	-	
Envuelta árido hum. después del rieg	0		_		-		-		-		Acer	table	Acep	table	-	0.1
Mezcla con cemento	%	144/84		_		-		1		-		-	1	-	-	2
Ensayos sobre el residuo de destilació	n							74.15		F 8 14	1000			100		
Penetración (25.° C, 100 g, 5 s)),1 mm	124/84	130	200			130	200	130		130	250			130	200
	H. F.		_	-	60	100	60	100	60	100	-	-	60	100	60	100
Ductilidad (25.° C, 5 cm/min)	cm	126/84	40		40		40		40		40		40		40	
Solubilidad en 1-1-1 tricloroetano	%	130/84	97,5		97,5		97,5		97,5	W. S.	97,5		97,5	1	97,5	

ESPAÑA EMULSIONES ANIONICAS

Norma EA/84

CARACTERISTICAS		Norma de			1		T	IPOS				969		
CARACTERISTICAS		Ensayo		R-0		R-1		R-2	EA			L-1		L-2
		NLT -	Mín.	Máx.	Min.	Máx.	Mín.	Máx.	Mín.	Máx.	Mín.	Máx	Min.	Máx.
Viscosidad Saybolt		138/84			1					TY S			7,790	
Universal a 25.° C	S			100				130						
	s					50	50	1150	40		50	100		50
Carga de partículas		194/84	Nega	tiva	Nega		Nega		Nega	ativa	Nega	tiva	Nega	
Contenido de agua (en volumen)	%	137/84		53		40		35		40	77.61	45		40
Betún asfáltico residual	%	139/84	43		60		65	T.	57		55		60	10.0
Fluidificante por destilación (en volumen)	%	139/84		7		0	16	0	7196	10		8		0
Sedimentación (a los 7 días)	% %	140/84		10		5		5		5		5		5
Tamizado (retenido en el tamiz 0,80 UNE)	%	142/84		0,10		0,10		0,10		0,10	1/21/20	0,10	18 11	0,10
Demulsibilidad (35 cm³ de Cl2Ca 0,02N)	%	141/84	60		60		60	15	200				- 0	Year I
Mezcla con cemento	%	144/84		-	13	-		-		-	1.10	-	-	2
Envuelta y resistencia al desplazamiento por el :	agua	196/84						DO EN				21		
Envuelta árido seco			_		-		=		Bue	of the best of the second	Bue		Par 3	1
Envuelta árido después del riego		1	_		-			2 - 1		otable				
Envuelta árido húmedo			_		-		-	-		otable				
Envuelta árido húmedo después del riego			_		_		-		Acer	table	Acer	table		3
Ensayos sobre el residuo de destilación							5				1			TE IS
Penetración (25.º C, 100 g, 5 s)	0,1 mm	124/84	130	200	130			200		250		200		
			-	-	60	100	The Part of the last	100	-	-	60	100		100
Ductilidad (25.° C, 5 cm/min)		126/84	40		40		40		40		40	115	40	0.8
Solubilidad en 1-1-1 tricloroetano		130/84	97,5		97,5		97,5	1.480	97,5		97,5	73.7	97,5	-U ()

	ESPAÑA	EN	AULS	IONE	S ESP	ECIAI	LES		Nor	ma EE/84
HART DAYS OF EAT ALL PARTY	E CONTROL	Norma	EMUI	SION I	MPRIM	ACION	EMULS	IONES R	EOLOGI	A MODIF
CARACTERISTICAS		de Ensavo	E	EAI	F	ECI	EAR	R(rm)	EAM(rm)
		NLT	Mín.	Máx.	Mín.	Máx.	Mín.	Máx.	Mín.	Máx.
Viscosidad Saybolt Furol, a 25.º C	s	138/84		50		50				
Furol, a 50.° C	S					50		50		
Carga de las partículas		194/84	Nega	ativa	Pos	itiva	Nega	ativa	Negat	
Contenido de agua (en volumen)	%	137/84		50		50		38	in the plant	35
Betún asfáltico residual	%	139/84	40		40		60		60	

ESPAÑA	EMUL	SION	ES ES	SPECL	ALES			Norm	a EE/84
CADACTEDICTICAS	Norma	EMUI	LSION	MPRIM	IACION	EMULS	SIONES R	EOLOGI	IA MODIF
CARACTERISTICAS	de Ensavo	I	EAI		ECI	EAI	R(rm)	EAM	(rm)
	NLT	Mín.	Máx.	Min.	Máx.	Min.	Máx.	Min.	Máx.
Fluidificante por destilación (en volumen) %	139/84	10	20	10	20		6		9
Sedimentación (a los 7 días) %	140/84		10		10		5		5
Tamizado (retenido en el tamiz 0,80 UNE) %	142/84		0,10		0,10		0,10		0,10
Envuelta y resistencia al desplazamiento por el agua Envuelta árido seco	196/84		2					Buer	na
Envuelta árido después de riego		_		- Bit		-	0-4	Acept	able
Envuelta árido húmedo	W	_		- 10-	45.00	as a		Acept	able
Envuelta árido húmedo después del riego	Mary Mary	-			57.1	THE S		Acept	able
Ensayos sobre el residuo de destilación	0000000		- M 14		- W				
Penetración (25.° C, 100 g, 5 s) 0,1mm	124/84	200	300	200	300	100	250	100	300
	00000					4 10 1		60	
Ductilidad (25.º C, 5 cm/min) cm	126/84	40		40	2 - 15	40	- WE MA	40	
Solubilidad en 1-1-1 tricloroetano %	130/84	97,5		97,5		97,5		97,5	
Ensayo del flotador (60.°) s	183/72	-	177 8	-	5025	800		800	

	CARACTERISTICA	S DA			UGA DES I		MINO	OSAS	CAT	IONI	CAS		
		1570	Rotura	rápida			Rotur	a media	a	82 E	Rotura	lenta	
The second		EC	R-1	EC	R-2	EC	M-2	ECM	-2h	EC	L-1	ECL	-lh
		Mínimo	Máximo	Mínimo	Máximo	Mínimo	Máximo	Minimo	Máximo	Mínimo	Máximo	Minimo	Máximo
	Viscosidade Saybolt - Furol a 25.° C s	20	100	_	_	_	_	_	_	20	100	20	100
0	a 50.° C s	-	- 5	20	100	20	300	20	300	=	5	-	5
da emulsão	Sedimentação % Peneiração %	-	0,10	_	0,10	_	0,10	_	0,10	-	0,10	_	_
mu	Desemulsibilidade %	40	-	40	-	-	1-	-	-	- 1	_	* = .	w - *
a a	Rotura com cimento %	-	-	_	-	-	-	-	-	-	2,0	-	2,0
	Adesividade aos agregados: Agregado soco			_		bo		bo				-	
Amostra	Idem, após pulverização	-		Ü			ábel		ábel	Mil-		-	-
E	Agregado humido			1000			ábel		ábel	-	4	-	
-	Idem, após pulverização	posi	tivo	posi	itiva		ábel tiva	posi	ábel	nos	tiva	posi	tiva
	Carga das particulas Destilado a 260.º C	posi	liva	posi	liva	posi	liva	posi	liva	pos	Liva	posi	LIVA
	(volume) %	-	3	-	3	-	12	1	12	-	_	-	-
	Residuo da destilação %	57	_	63	-	57	-	63	-	57	-	57	-
da	Penetração %	100	250	100	250	100	250	40	90	100	250	40	90
duo	Ductilidade %			40	-	40	-	40	-	40	-	40	_
Residuo da destilação	Solubilidade no tricloroetileno %	97,5	-	97,5	-	97,5	-	97,5	-	97,5	-	97,5	

	CARACTERISTICA	S DAS		ORTU ULSO			MINC	SAS	ANIC	NIC	AS		
			Rotura	rápida			Rotur	a media			Rotura	lenta	
		EA	R-1	EA	R-2	EA	M-1	EAM	-2h	EA	L-1	EAL	-1h
		Mínimo	Máximo	Mínimo	Máximo	Mínimo	Máximo	Minimo	Máximo	Minimo	Máximo	Mínimo	Máximo
	Viscosidade Saybolt – Furol a 25.º C	s 20	100	75	400	20	100	100		20	100	20	100
ac	Sedimentação	6 -	5	-	5	-	5	-	5	-	5	-	5
cilinisao	Peneiração	6 -	0,10	-	0,10	-	0,10	-	0,10	-	0,10	-	0,10
	Desemulsibilidade	6 60	-	60	-	-	-	-	-	-	-	-	-
D D		6 -	-		-	-	-	-	-	-	2,0	-	2,0
Alliostia	Adesividade aos agregados: Agregado seco			-		bo		bo		17.02		_	
2	Idem, após pulverização	-	-			razo	-	razo		-		-	O LOT
2	Agregado humido	-	9	-		razo		razo		-		-	EA.
	Idem, após pulverização					razo		razo		57		67	
0		6 55	200	100	200	55	200	65	90	57	200	57	90
вся		6 100	200	40	200	40	200	40	90	40	200	40	90
destilação		6 97,5	=	97,5	=	97,5	_	97,5	=	97,5	-	97,5	_

FRANCE

			En	nulsion	cation	iques. S	pécific	ations	1000	1000	
		Rapid	e	Semi-i	apide			Lente		Sursta	bilisée
Caractéristiques	34	Classe	S	Cla	asses			Classes	S	Class	ses
	ECR 60	ECR 65	ECR 69	ECM 60	ECM 65	ECM 69	ECL 55	ECL 60	ECL 65	ECS 55	ECS 60
Teneur en eau %	≤41	≤36	≤32	≤41	≤36	≤32	≤46	≤41	≤36	≤46	≤41
Pseudo-viscosité à 25.º C mm²/s (cSt)	15a115	>45	>115	15 a 230	>45	>115	<115	15 a 115	>45	<115	15 a 230
Homogénéité:	-0.1	-01	-0.1	-0.1	-0.1	-01	-0.1	-01	-0.1	-0.1	-0.1
particules supérieures à 0.63 mm particules comprises entre 0.63 mm et 0.16 m %								<0.1			< 0.1
Stabilitaté au stockage (*)	< 0.25	C 0.23	C 0.23	0.23	0.23	0.23	0.23	0.23	0.23	0.23	0.23
- émulsion à stockage limité %	≤5	≤5	≤5	≤5	≤5	≤5					
- émulsion stockable %		- 1		≤5	≤5	≤5	≤5	≤5	€5	≤5	≤5
Adhésivité (**)			1 1 1	1			15.			5	1
- émulsion à stockage limité	≥90	≥90	≥90	≥90	≥90	≥90	Fillip	One of	1145	kells.	SUR .
1.ª partie de l'essai 2.ª partie de l'essai	≥75	≥75	≥75	≥75	≥75	≥75					-
- émulsion stockable	213	213	213	≥75	≥75	≥75	≥75	≥75	≥75		
Indice de rupture	< 100	< 100	< 100		80 a 140		>120	>120	>120		
Stabilité au ciment g	100000									€2	≤2
Charge des particules	positive	positive	positive	positive	positive						

(*) Remarque: il est admis qu'une émulsion stockée pendant un temps T., brassée, puis laissée au repos pendant vingt-quatre heures, peut présenter une couche superficielle de solution aqueuse (essai de stabilité au stockage). On distingue:

une émulsion à stockage limité, par le fait que le temps T précèdemment défini est au maximum de quinze jours.
une émulsion stockable, par le fait que le temps T précèdemment défini est au maximum de 3 mois.
(**) Les caractéristiques d'adhésivité d'une émulsion doivent etre spécifiées vis-à-vis d'une nature définie de granulats.
Les méthodes d'essai portant sur ces différentes caractéristiques sont en préparation.

FRANCE

	Emu	Isions anic	oniques. Sp	ecification	IS				
Caractéristiques	FAR 50	Rapide Classes EAR 55	EAR 60	FAR 65	EAL 55	Lente Classes EAL 60	EAL 65	Surstal Clas EAS 55	
T	The state of the s						- military in the	THE COLUMN TWO	1000
Teneur en eau Pseudo-viscosité à 25° mm²/s (cSt)	6 ≤51 <45	<115	€41 15 a 230	≤36 >45	<46 <115	≤41 15 a 230	≤36 >45	<46 <115	≤41 15 a 230
Homogénéité	6 < 0,1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
- particules comprises entre	6 < 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25
Indice de rupture	>0.5	>0.5	>0.5	>0.5	0	0	0		
Stabilité au ciment	3				>2	>2	>2	>2	>2
Charge des particules	négative	négative	nėgative	négative	négative	négative	négative	négative	négative

BELGIQUE EMULSIONS ACIDES OU CATIONIOUES

****		Emuls	ion de bitu	me		lsion de bit astomére (s	Emulsion de bitume plastomére (s)		
Unités	Désignation des essais	A	В	C	D	Е	F	G	Н
%	Teneur en eau	max. 35	max. 35	max. 35	max. 35	max. 35	max. 32	max. 40	max. 30
-52-10	pH	max. 6	max. 6	max. 6	max. 6	max. 6	max. 6	max. 6	max. 6
%	Dispersion	max. 0,5	max. 0,5	max. 0,5					
170	Bitume résiduel récupéré	15 0	ore;	- 1 TO L					
0,1 mm	Pénétration RC	50/250	50/250	50/120	50/120	120/150	150/250	50/120	50/250
°C	Ramollissement BA				min. 70	min. 55	min. 75	min. 45	min. 45
°C	Fracture FRAAS				max. 18	max. 18	max. 18	max. 15	max. 15
mPa.s	Viscosité à 135.º C	A Property			min. 750	min. 600	min. 750		
cm	Ductilite à 5.º C	THINKS (min. 50	min. 50	min. 50	min. 3	min. 3
%	Retour élastique a 25.º C				min. 50	min. 50	min. 50		
	Masse volumique	1,000 a	1,000 a	1,000 a					1370
	relative (25.° C / 25.° C)	1,050	1,050	1,050	100	10000			
%	Solubilité	min. 99	min. 99	min. 99			Mile at any		1000

	BELGIQUE EMULSIONS BASIQUES											
Title	DATE COLUMN TO ACCUSE	W ALEXANDER OF THE REAL PROPERTY.	Tipes d'emulsions basiques	K-VI STORY								
Unités	Désignation des essais	A	В	С								
1000	Masse volumique relative	1,000 à 1,040	1,000 à 1,040	1,000 à 1,040								
%	Eau E	max. 45	max. 45	max. 45								
%	Dispersion	max. 45	max. 45	max. 45								
°E	Viscosite E.20	2,0 à 12,0	3,0 à 12,0	3,0 à 12,0								
1/10 mm	Propiétés du bitume résiduel: Pénétration P	50 à 250	50 à 250	50 à 120								
	Masse volumique	1,000 à 1,050	1,000 à 1,050	1,000 à 1,050								
%	relative Solubilité	min. 99,0	min. 99,0	min. 99,0								

A THE STATE OF		r	FALIA							
				ANIO	NICHE			(CATION	CHE
EMULSIONI BITUMINOSE I	BASICHE SECO	NDO LA NOR	RMA CN	E.M. BIT. ACIDE						
Prodot	ti	Metodi di	Rottura	rap		Rottura media	lenta	Rottura rapida	media	lenta
Caratteristiche		prove	Giabit 50%	55%	60%	55%	55%	EBA-R 55%	EBA-M 55%	EBA-L 60%
Contenuto di bitume		CNR				1				
puro o flussato	min, % peso	B.U. n. 100	50	55	60	55	55	55	55	60
Contenuto di emulsivo										
secco	max. % peso	Fasc. 3 art. 7	1	1	1	2	1	1	1	1
Trattanuto su settaccio 0,4 UNI	max % peso	Fasc. 3 art. 9	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0,4
Omogeneita		Fasc. 3 art. 10	0,1	0,1	- 0, .	-,.	- 0,1	, -		
Sedimentazione	man to peso	Tuber 5 ditt 10		10- E		with that		C and	100	FIGT L M
a 3 giorni	max, mm.	Fasc. 3 art. 11	4	4	4	4	4	4	4	4
a 7 giorni	max. mm.	Fasc. 3 art. 11	10	10	10	10	10	10	10	10
Stabilita a										
7 giorni	max. % peso	Fasc. 3 art. 12	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Stabilita a										
2 mesi	max. % peso	Fasc. 3 art. 13	0,6	0,6	0,6	0,6	-	-	-	-
Stabilita al						-2		17.5		
gelo		Fasc. 3 art. 14	0.5	0.5	0.5	0.5	-	-	-	-
Viscosita Engler	20.° C	B.U. n. 102	-							
minimo	۰E		2,5	4,5 15	6	4,5	4,5	4,5	4,5	6
massimo	۰E		15	15	18	15	15	_	-	-
Caratteristiche del legante	market area	CNID DIL 34	200	200	200	200	200			
- penetrazione a 25.º C	máx. dm.	CNR B.U. 24 CNR B.U. 44	200 70	200 70	70	70	70	-	-	-
duttilita a 25.° C solubilita insolventi org	min. cm.	CNR B.U. 48	99	99	99	99	99	99	99	99
punto di rammollimento	min. % peso	CINK B.U. 48	79	79	39	77	33	- 33	33	17
P.A.	max. °C	CNR B.U. 35	42	42	42	42	42	_		_
– punto di frassa	max. °C	CNR B.U. 43	-14	-14	-14	-14	-14		-	-

	ENGLAND ANIONIC ROAD EMULSIONS												
		Class of anionic road emulsions											
Property	Appendix	Al-60	Al-55	A1-40	A2-57	A2-50	A3	A4					
Residue on 710 µm BS sieve(% by mass maximum)	C.1	0.05	0.05	0.05	0.05	0.05	0.05	0.05					
Residue on 150 µm BS sieve (g per 100 ml maximum)	C.2	0.15	0.15	0.15	0.15	0.15	0.15	0.15					
Stability to mixing with coarse aggregate (% coagulation)	D.1	20-80	20-80	20-80	< 40	< 40	< 40	< 40					
Stability to mixing with cement (% coagulation) Blinder content (minimum	D.2		-	-1	> 2	> 2	> 2						
% by mass)	Е	· 58	53	38	55	48	55	56					
Viscosity (°Engler 20.°)	F.1	6-9	5-8	4 max.	8 max.	5 max.	9 max.	8 max.					
Coagulation of emulsion at low temperature	G	nil	nil	nil	nil	nil	nil	nil					
Storage stability (short period test) (inversions to clear sediment, maximum)	H-1	60	60	60	60	60	60	60					
Storage stability (long period test) (water content difference % maximum)	H-2	2	2	_	2	2	2	2					
Particle charge	J	neg.	neg.	neg.	neg.	neg.	neg.	neg.					

EMULSIONES ASFALTICAS

	ENGLAND	CATIO	ONIC ROAD	EMULSIO	NS.						
Decision	Augustia	Class of cationic road emulsions									
Property	Appendix	K1-70	K1-60	K1-40	K2	K3					
Residue on 710 µm			1000								
BS sieve (% by mass maximum)	C.1	_	0.05	0.05	0.05	0.05					
Residue on 150 µm			,	WITE DATE							
BS sieve (g per 100 ml maximum)	C.2	_	0.15	0.15	0.15	0.15					
Binder contents (minimum				The land of the land	**	25					
% by mass)	E	67	57	38	57	56					
Viscosity (°Engler 20.° C)	F.1	_	6-9	4 max.	10 max.	10 max.					
Viscosity Redwood No. II (s at 85.° C)	F.2	25-35	-								
Coagulation of emulsion	1.0	20.00									
at low temperature	G	= 01	nil	nil	ni1	nil					
Storage stability (short											
period test) (inversions						CONTRACTOR OF					
to clear sediment)	H.1	- 11	60	60	60	60					
Storage stability (long											
period test) (water content			1 1 1 1 2 2 3 3 7								
difference % maximum)	H.2		2	-	2	2					
Particle charge	J	positive	positive	positive	positive	positive					

FINISH S	PECIFICATI	ONS FOR	CATIONIO	C BITUMI	NOUS EMU	LSIONS		
Property	Demands	Unit	Unit Fast breakdown of emulsions			Mixing emulsions	Method	
			N-0	N-1	K-0	S-0		
Viscosity at 50.° C	minmax.	mm²/s		200-600		MILE M	TIE	161
Viscosity at 25.º C	minmax.	mm/s	35-170	Land Land	35-170	35-170	TIE	16
Distillation up to 260.° – Oil distillate	minmax.	vol%	0-3	0-3	0-3	5-15	TIE	162
- Distillation residue	min.	weight-%	60	65	60	55		
Penetration of distillation residue at 25.° C	minmax.	0.1 mm	100-300	100-300	100-300	100-300	TIE	101
Solubility in trichlorethan	min.	weight-%	99.5	99.5	99.5	99.5	TIE	111
Sieve test 0.5 mm. sieve	max.	weight-%	0.2	0.2	0.2	0.2	TIE	163
Sedimentation test, 5 days	max.	weight-%	- 4	4	4	4	TIE	164
Setting point	minmax.	%	- min. 60	min. 60	max. 60	max. 60	TIE	166

Property Unit		Product descripton										
Property Unit	(AEK-M2S)	(AEK-M1)	(AEK-M2)	(AEK-S1)	(AEK-R0)	(AEK-R1)	(AEK-R2					
Contained bitumen grade		B 180	B 180	B 180	b 180	B 180	B 180					
14. Destilation residue after				THE RESERVE								
destilation up to 260.° C weight-%, mi		60	65	60	50	60	65					
 Solvent content vol-%, ma 	x. 8	5	8	3	3	3	3					
Filler setting index. g, mi				90								
Filler setting index. g, ma	AND DESCRIPTION OF THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED	140	140									
 Filler setting index. g, ma 	X.				100	90	90					
17. Viscosity, STV, 4 mm.		N. T. T.										
at 25.° C s, ma				12	8							
D:o at 50.° C s, m		8	25		/	10	20 45					
s, ma		20	60	0.1	0.1	20	45					
18. Sieve test at 25.° C weight-%, ma	X. 0.1	0.1	0.1	0.1	0.1	0.1	0.1					
D:o at 50.° C weight-%, ma	x. 0.1	0.1	0.1			0.1	0.1					
Storage life after storage in laboratory for 28 days at 25.° C	Will the			cosity and si test as above								
Starage stability after starage in laboratory for 7 days at 50.° C	Maria y			Not requiered	d	Viscosity and test as above						
3. Kinemativ viscosity of mm ² /s distillation residue at 60.° C m	n 3.000						HE KAT					
1. Penetration of distillation residuel 1/10 mm	2.000				THE RESE	1502	1502					
1. Penetration of distillation residue 1/10 mm		1752	2002	160 ²								

GERMANY ANIONISCHE UND KATIONISCHE BITUMENEMULSIONEN

			Anic	onische B	Bitumener	mulsion	ien _	Kationisch	e Bitumene	mulsionen	
Merkmale	U 55	(schnell	stabil breche	nd) F	Halb- stabil (mitt schnel brech)	Stabil (lag. sam brech)	Bitumenemulsionen mitverbesserten hafteigenschaften	U 60 K		Haft- klever	Prüfver fahren DIN 1995
a) AuBere Verschaffenhelt b) Slebrückstand höchstens Gew %	or a	braun, flüssing, glatt ohen festen Bodensatz 0.5							glatt ensatz	U 1.24 U 26	
Viskosität a) im Engler-Viskosimeter bel 20.º C misdestens E	3	312		2,5	3	12	3	312		16	U 14 b
b) im Stra Benviskosimeter (4 mm-Düse) bei 20.° C mindestens s		_	50		_	_	1/2/1		antal S		U 14 a
 Bitumengehalt 1) Trockensubstanz abzüglich Asche mindestens Gew % 	55	60	55	55	55	55	57	60	65	3050	U 25
4. Asche hochstens Gew %				2,5					1,0		U 8
5. Art des Bitumens					oder 300			Bitu	men 80	300	U 27.4
6. Stabilitätsgrad	un- stabil	un- stabil	un- stabil	un- stabil	halb- stabil	stabil	un- stabil	-	-	-	U 28
7. Lagerbastandigkeit Siebrückstand nach 7 Tagen Lagerung			mino	destens B	Wochen			mind 4 Wochen	8 Wochen	4 Wochen	U 29
höchslens Gew %					,5			0,5	0,5	-	U 26
8. Verhalten bei tiefer Temperatur	Ē	ī	-	siehe Prüfver fahren	-	-	-	==	-	-	U 30
Gebrauchsprüfungen a) Kiebeprüfung	- 1-	114	siehe	Prüfve	rfaharen	WE'L	siehe Prüf- faharen	siehe Prü	verfaharen	die 115	U 31
b) Verhalten des Binde- mittelüberzuges bei Wasserlagerung			siehe	Prüfve	rfaharen				_	-	U 32
c) ALBERS-Test		J.A.	de la	COT	NE	IVA	siehe Prüf- faharen	DTAA	Prüfver	faharen	

1) Unterschreitung des geforderten Mindestwertes um 1,0 % (absolut) ist als Liefertoleranz einschließlich des Prüffehiers zulässig

	N	OR	W	AY	1			
EMULSIO	N	SP	E	CIF	TIC	ATI	ON	IS

THE RESERVE	Analys metode					BE 70 M	BE 70 R/M	BE 70 M	BE 70 M	BE 60 S
	etter	BE 50 R	BE 60 R	BE 70 R	BE 70 M	500	1.500	3.000	6.000	BE 00 2
Viskositat STV,	LALIRHMEN	Jeles -			7					100
4 mm	DIN	0								THE STATE OF
v/25.° C v/50.° C	DIN 52023	< 8	10-20	20-40	20-80	10-20	10-20	10-20	10-20	< 8
Homogenitet, sil-	32023		10-20	20-40	20-80	10-20	10-20	10-20	10-20	
prøve 0,5 mm	ASTM	5.610							13	
v/25.° C	1101111	< 0.1								< 0.1
v/50.° C	D-244	Title -	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	
Lagringsstabilitat			15 18 19		15,1-11		250			X = T
silprøve etter 4	ACTIVA	Mark -								
ukers lagring v/25.° C	ASTM D-244	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	- 0.1	- 0.1
Brytetest	Fransk filertest	< 80	< 80	< 80	80-120	80-120	R:<80	80-120	< 0.1 80-120	< 0.1
Diviciest	Transk mertest	< 00	< 80	< 00	80-120	80-120	M:	80-120	80-120	120
							80-120			
Destillasjon til	-				(T. C. ()				A TOTAL PROPERTY.	
260.° C	ASTM		100				Mark Street			
Oljedestillat max. %	D-244	2	2	2	0					
Bindemiddeirest	D-244	3	3	. 3	8	1	11	11	1 1	3
min. %	MAD S IDO	50	60	65	65	69	69	67	67	57
Provo pa destilla-	I Thursday					111-111				
sjonsrest	ASTM		111	March M.	nan-30	Thank			las cta	tol 1.
Penetrasion	D-5	200 400	100 250	100 050	100 000	11 20		(1)	103.01	
v/25.° C Viskositat		200-400	100-250	100-250	100-300					100-250
v/60.° C	ASTM D-2170					~ 500	~ 500	~3.000	~6.000	

EMULSIONES ASFALTICAS

SUISSE EMULSIONS DE BITUME			cor car		Norm- S N 671	V S.L		
					DK 625.7	063:338.833.3		
Elaboré et édité par	l'Union de	es profession	nels suisses	de la route	(VSS)			
Genres d'émulsions:	Е	ésignation des	sortes	ALSO NO.		(Same and a		
Anionique (alcaline) Cationique (acide)	ER 50 a ER 50k	ER 55a ER 55k	ER 60a ER 60k	ER 70a ER 70k	EM 60a EM 60k	EST 60a EST 60k		
Exigences: 1. Etat à la réception	liquide	et homogène s	elon SNV 671	710				
Charge électrique des globules déterminée par électophorèse								
Refus au tamis de contrôle 0,16 mm	0,3	0,3	0,3	- 1	0,3	0,3		
4. Viscosité a/ Viscosité Engler à 20.º C °E	<6	215	215	<120	215	215		
b/ Viscosité dynamique à 20.º (SNV 671 908) cP 5. Teneur en bitume, résidu après évaporation jusqu'à 160.º C % du poids min.	50	55	60	68		The later		
6. Teneur en eau % du poids max.	-	-	-	-	40	40		
 Rupture selon Γessai de malaxage Miscibilité avec gravillon: temps de rupture s Miscibilité avec poudre minérale 	≤40	€40	≤40	≤40 miscible	>40	- miscible		
Stabilité au stockage	Annual of the		11011	imsciole		miscioic		
a/Sédimentation/crémage différence de la teneur % du poids max. en bitume des deux couches	4	2,5	2	-	2	1,5		
b/ Coagulation au plus tôt après jours	7	7	7	-	14	21		
Propiétés du residu après évaporation		3817				NETTE WE		
jusqu'à 160.º C a/ Pénetration à 25.º C 1/10 mm	-	sera	déter	miné	2-100	09/2/19		
b/ Point de ramollissement A. et B. °C		sera	déter	miné	-	-0		
c/ Indice de pénetration	-1+0,7	-1+0,7	-1+0,7	-1+ 0,7	-			