

La imágenes recogen la mesa que presidió la inauguración de las jornadas y de la exposición.

Miércoles 24 de marzo

I 24 de marzo de 2004 tuvo lugar la ceremonia de apertura de este simposio, que fue presidida por D. José Mª Mazón, Consejero de Obras Públicas y Vivienda del Gobierno de Cantabria, acompañado por D. Antonio Alonso, Director General de Carreteras del Ministerio de Fomento; D. Gonzalo Piñeiro, Alcalde Santander; D. Francisco Criado, Presidente de la ATC; y D. Jesús Santamaría, Presidente del Comité Técnico de Geotecnia Vial de la ATC.

Primera sesión: "Rellenos y materiales marginales"

La "Orden MFOM/1382/2002, Principales innovaciones sobre el PG-3/75 en materia de Geotecnia Vial",

fue presentada por D. Jesús Santamaría Arias, de Corsan-Corviam y Presidente del C.T. de Geotecnia Vial, que comentó las principales variaciones incluidas en la Orden MFOM/1332/2002, de 16 de mayo, que actualizan determinados artículos del Pliego de Prescripciones Técnicas Generales. Su importancia radica no sólo en su preceptiva aplicación a las obras de carreteras del Estado, sino también a otros tipos de obra y de Administraciones distintas. Posteriormente presentó la estructura del PG-3 en materia de geotecnia vial, señalando los artículos que aparecen en la Orden y no existían en el PG-3/75, pasando a detenerse en los rellenos, dentro de los cuales se incorporan nuevos tipos (relleno todo-uno), se modifica la división por zonas de sus diferentes tipos, añadiéndose la definición de una zona adi-

cional para los tres tipos de relleno, denominada espaldón, se incorporan nuevos materiales (no se consideran parámetros de clasificación intrinseca de un suelo ni el CBR ni su densidad Proctor, se añaden los criterios de sales solubles como un criterio más de selección de materiales, y un grupo nuevo como el de materiales marginales, se modifican ligeramente el resto de las condiciones de clasificación que se establecía en el PG-3/75, así como la admisión de materiales estables procedentes de procesos industriales, etc.), se cuidan las condiciones de puesta en obra (mucho más extenso en la nueva redacción y en donde se destaca el cambio relativo a la humedad de puesta en obra del material en los terraplenes), se modifican los sistemas de control de calidad (se propone, para los terraplenes, el control no sólo de la

densidad alcanzada y de la humedad de puesta en obra, sino también de las características de deformabilidad de las capas conseguidas, de forma que se pueda asegurar un comportamiento aceptable del relleno, etc.) y se da un tratamiento distinto a los rellenos localizados (se excluven las zanias rellenas de material drenante que pasan a tratarse dentro de la parte 4, quedando reservado el artículo 332 a zonas con misión estructural, etc.).

Dentro de los geosintéticos, sólo se han abordado los geotextiles, sus condiciones de uso general y como filtro o separación.

mente los materiales yesíferos ni los restos de demolición ni otros poco convencionales. Además, se han analizado las propiedades geotécnicas de los materiales marginales más plásticos y menos densos cuando se refuerzan con cal apagada, y sus métodos de control, proponiendo un nuevo criterio de aceptación para el ensayo de placa de carga.

Finalmente, estableció su clasificación (según su densidad seca y límite líquido) para establecer secciones tipo como solución a la deformabilidad.

Posteriormente, D. Enrique Dapena, del CEDEX, presentó un resumen de las 19 comunicaciones recibidas para esta de FCC Construcción, y D. Germán Burbano, de Dragados, expuso el control de los movimientos y de la piezometría realizado durante dos años y medio, y las medidas de drenaje adoptadas que permitieron la estabilización de los movimientos de un relleno, de 260 m de longitud y 70 m de altura, construido con argilitas, limolitas y areniscas en la zona del puerto del Manzanal (autovía del Noroeste). El problema surgió al año de finalizada la obra, en el que se detectaron unas fisuras logitudinales en la calzada que afectaban a unos 25 m; y se comprobó la existencia de movimientos en la zona de contacto rellenoterreno natural, y cómo su velocidad estaba ligada a periodos lluviosos. Tras su estudio, se adoptó la solución de un abanico de drenes subhorizontales del tipo californiano (drenaje por gravedad) en el lado valle del relleno, y unos pozos verticales (drenaje por bombeo) en el lado de montaña, ejecutándose 22 drenes que resultaron ser muy eficaces en el descenso de la piezometria, ya que, a medida que se iban perforando y se conseguía drenar el terreno en la cimentación, se producía el descenso de los niveles de agua en los pozos y piezómetros.

Posteriormente, D. Miguel Fe Marqués, de AEPO, presentó el "Diseño y construcción de un relleno a media ladera en la autovia Torrelavega-Corrales de Buelna (Sur)," también firmado por D. José M. Lorenzo, de AEPO, y D. Miguel A. Rodríguez Miranda, de ISR, S.A. destacando que la cimentación de un relleno de gran altura (43 m) sobre una ladera de fuerte pendiente (20-25°) en terrenos cretácicos (facies Weald) y jurásicos muy alterados ha requerido importantes medidas estabilizadoras. En el apoyo de su pie, sobre la terraza aluvial, se ha realizado una zanja de escollera, de 7 a 11 m de profundidad y 8 m de anchura en su base, para asegurar el apoyo del sustrato calizo competente. La presencia de un antiguo deslizamiento en la ladera obligó, en el tramo siguiente de relleno, a adoptar una geometría muy tendida, con un talud medio 3H/1V. La solución adoptada de zanja de escollera para asegurar el pie del relleno sobre el sustrato competente ha

De izquierda a derecha, Sres. Dapena, Parrilla y Santamaría.

En "Los suelos marginales: caracteristicas y aprovechamiento", D. Carlos Oteo Mazo, de la Universidade da Coruña, consideró un acierto práctico que el nuevo PG-3 incluya los materiales definidos como marginales, que podrán ser utilizados con un estudio especial en núcleos de terraplenes, referido al material sin refuerzo o adición de materiales cementantes, lo que abre amplias posibilidades para la utilización de materiales que antes iban a vertedero.

También aclaró que no debe pensarse sólo en su plasticidad, sino que debe analizarse su granulometría v establecer la variación de su densidad seca óptima P.N., parámetro muy importante para distinguir su posible aprovechamiento y comportamiento. Así mismo, que se han analizado sus propiedades geotécnicas sin incluir clarasesión, dividiéndolas por su contenido y subrayando algunas cuestiones de cada una de ellas. Desde la estabilización de rellenos de autovía, pasando por cimentaciones y terraplenes en suelos blandos de estuario, la utilización de residuos de pizarra para la construcción o las nuevas técnicas de compactación dinámica, la exposición del Sr. Dapena, representante español en el Comité internacional de la AIPCR, fue destacando las aportaciones de las comunicaciones y planteando algunas cuestiones para su debate, todo lo cual sería prolijo de resumir, por lo que se invita a su lectura en el libro de ponencias.

La "Estabilización de un relleno de autovía de 70 m de altura con una solución combinada de drenes horizontales y pozos de bombeo", de D. Alberto Escanilla y D. José M. Gutiérrez, tenido un comportamiento satisfactorio, destacando que el deslizamiento producido durante la construcción no afectó al tramo de relleno apoyado sobre la zanja de escollera.

Más adelante, el mismo ponente presentó la "Correlación entre el límite líquido, el CBR y la densidad máxima Próctor normal para arcillas miocenas de la cuenca del Duero", informando que se ha realizado un análisis estadístico, a partir de resultados de ensayos de laboratorio de varios proyectos, entre Carrión de Los Condes, Burgos y Palencia, de muestras de arcillas del mioceno medio y superior, de las facies Tierra de Campos, y de sus cambios laterales. Se han obtenido correlaciones entre el límite líquido y el CBR correspondiente a una compactación 100% P.N. y entre el límite líquido y la densidad máxima en el ensayo Próctor Normal, con coeficientes de correlación en ambos casos superiores a 0,75.

Tras afirmar que estas correlaciones deben tomarse como un valor meramente indicativo y que no deben emplearse en sustitución de los ensayos Próctor Normal y CBR, de los resultados obtenidos parece deducirse que en los materiales estudiados, para valores del límite líquido inferiores a 40, puede esperarse en general valores del CBR 100% P.N., iguales o superiores a 3, y densidades máximas P.N., iguales o superiores a 1,70 t/m³, sin que pueda descartarse, por supuesto, valores inferiores en algunas muestras.

También afirmó que se ha intentado extrapolar las correlaciones obtenidas a otros suelos arcillosos miocenos, y no parecen extrapolables.

Las "Variaciones en el CBR en arcillas terciarias en Andalucía y Palencia" fue presentada por Dña. Ana Otero, de Intecsa-Inarsa, coautora junto a D. Fernando Román, de la misma empresa. En ella, se expusieron y compararon los resultados de ensayos para la determinación del índice CBR empleando diferentes sobrecargas mayores de las usuales, ensayándose muestras de arenas arcillosas de Andalucía y margas de Palencia. Sus resultados indicaron que el CBR de muestras que se van a

 D. Carlos Oteo (izquierda) y D. Enrique Dapena (derecha) en un momento de sus intervenciones.

colocar en terraplenes bajo cargas de más de 1 m de tierras, de acuerdo a la norma UNE, con las sobrecargas que van a tener en obra, son considerablemente mayores que los que se determinan habitualmente. Los ensayos se realizaron en laboratorios distintos, y los resultados solamente son representativos de muestras como las ensayadas, pero son razonablemente lógicos. Como conclusión, se dedujo que un material puesto en obra bajo una carga de tierras mayor de 1 a 2 m puede tener un CBR bastante mayor y un hinchamiento claramente menor que los que resultan en el ensayo realizado de forma "habitual". Así mismo, que los pliegos de prescripciones deberían reflejar las condiciones de sobrecarga con que se debe llevar a cabo el ensayo.

"Terraplén sobre la marisma de Tina Mayor en la autovía del Cantábrico", de D. Fernando Román, y Dña. Montserrat Estaca, de Intecsa-Inarsa, explicaba el caso de un terraplén de 4 a 13 m de altura de proyecto sobre limos algo orgánicos de consistencia floia en los que se intercalan niveles arenosos de mediana densidad, ubicado en el final del tramo Lamadrid-Unguera, de la autovía del Cantábrico, que atraviesa la marisma de Tina Mayor. A la vista del comportamiento de los suelos y del tratamiento efectuado, se han medido asientos de más de 2 m para alturas de 10 m de terraplén y espesores de 18 m de depósitos, lo que supone más de un 10% de deformación y un módulo de deformabilidad global del orden de 1 800 kPa (18 kg/cm²) para los suelos de la marisma.

Posteriormente, el hecho de que el terraplén hava asentado más de 2 m supone que "han desaparecido" bajo la superficie del terreno natural más de 120 000 m3 de tierras que han tenido que aportarse de nuevas fuentes. Igualmente, destacó que el tratamiento con inclusiones de columnas de grava ha mejorado el terreno notablemente, sin apreciarse ningún signo de inestabilidad, al tiempo que han funcionado claramente como drenes verticales acelerando la consolidación, y cuyo tratamiento ha posibilitado la cimentación de la estructura del enlace de Unquera directamente sobre suelo mejorado y pre-

D. Davor Simic Sureda, de Ferrovial Agromán, presentó la "Utilización en terraplenes de los materiales de las facies intermedias y químico-evaporíticas del sureste de Madrid", estableciendo unos criterios de su clasificación geotécnica en orden a su aptitud para construir terraplenes, describiendo sucintamente los resultados de los ensayos realizados en terraplenes experimentales con suelos marginales para evaluar su comportamiento. En los terraplenes ejecutados con arcillas yesiferas, las densidades alcan-

A la izquierda, D. Alberto Escanilla. A la derecha, Dña. Montserrat Estaca

zadas son iguales o superiores al 97% del PN, superior al umbral mínimo exigido por el PG3 para el núcleo, 95%, con una humedad de compactación que difiere un punto de la óptima, todo ello para 6 pasadas dobles de rodillo del tipo de "pata de cabra". Se ha observado un crecimiento en el tiempo de los módulos de deformación del segundo ciclo de carga E, que ha pasado de 42 MPa a 68 MPa al cabo de 48 horas y 7 días desde la finalización del terraplén, igual que la relación entre los módulos del segundo y primer ciclos de carga E./E, ha bajado de 4,9 a 2,2. En cuanto a los ensavos de hue-Ila, han sido satisfactorios.

Por lo que se refiere al terraplén ejecutado con peñuela, los resultados obtenidos en los ensayos mecánicos de control de compactación, de carga con placa y de la huella son satisfactorios; y su comportamiento mecánico y deformacional, muy bueno.

"Diseño y comportamiento de los tratamientos realizados en la nueva Pista de Barajas, en las zonas de vertidos mineros", fue presentada por D. Miguel Rodríguez-Miranda, de ISR, S.A. y D. Aurelio Arespacochaga, de C.G.A., S.L. La pista se diseñó integramente en terraplén, con una altura media de 7 m sobre el terreno original, y una anchura de unos 440 m, e implicó la construcción de un relleno de 7 m de altura, de casi 24 millones de m³, sobre

la terraza del Jarama. En varias zonas a lo largo de la pista se habían realizado explotaciones mineras de sepiolita, que suponían la excavación del terreno a profundidades de hasta 30 m, con taludes de 600, y el posterior relleno del hueco con vertidos, básicamente de Peñuelas. El nivel fréatico se encuentra a una profundidad de 4 m.

Tras unos ensayos a escala real con dos terraplenes de prueba, se vio que la velocidad del proceso de consolidación era mucho mayor de la esperable.

En cuanto a los rellenos de las pistas de vuelo y rodadura, el material procedía de un préstamo formado por arenas tosquizas y tosco arenoso.

Entre los datos más destacables obtenidos con la instrumentación que se dispuso para el control de los asientos, se mencionan, entre otros, que los asientos bajo carga resultaron superiores a los previstos, del orden del 130% en uno de los sectores, y del 110% en otro. Los asientos secundarios definían un coeficiente Ca de 0,0043 a 0,0037, idéntico al previsto, y la retirada de la precarga supuso un rebote de 1 a 2 cm. A partir de ese momento, la pendiente en escala semilogarítmica es prácticamente cero.

"El ataque por sulfatos a las estabilizaciones de suelos con cal" fue la presentación de D. Claudio Olalla, del CEDEX, y de D. T. Fernández y D. M. J. Fraile, de Técnicas Territoriales y la Urbanas, analizando los fenómenos de hinchamiento y la consecuente pérdida de resistencia en estabilizaciones con cal en presencia de sulfatos solubles, identificando los factores que lo provocan, los métodos de análisis que existen para determinar el contenido de sulfatos; y exponiendo, finalmente, la experiencia de un caso concreto de estabilización de suelos con cal en presencia de sulfatos en los terraplenes del aparcamiento de San Martín de la Vega. En él se fijó, como criterio limitador de la validez de las arcillas margosas para ser estabilizadas, un 1% de contenido de sulfatos, y se usó cal garantizada por Ancade, una dosificacion óptima (4% de cal apagada) basada en una amplia campaña de ensayos de laboratorio, el uso de maquinaria mezcladora de gran energía que garantizase la homogeneidad del conjunto, un control intenso y una compactación elevada. Tras los ensayos, se observó que, a la semana, el hichamiento era del orden del 50%; y que el producido al mes es del orden del 80% del que se produjo al año; que se produce un cambio muy brusco en la velocidad de hinchamiento en el entorno de las 400 horas (entre las 100 y las 1 000 horas); que se podía interpretar, de acuerdo a los mecanismos que se producen en este fenómeno, que el primer tramo de la curva es el producido por la formación de cristales, mientras que el segundo tramo sería el originado por su crecimiento debido a la hidratación.

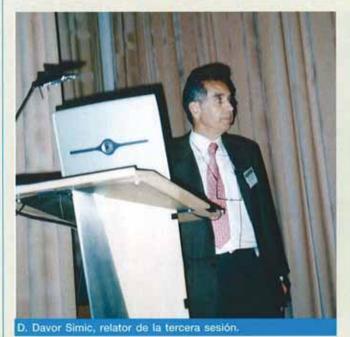
Se finalizó diciendo que es difícil pronosticar con precisión cuándo se va estabilizar el proceso; pero, haciendo una extrapolación de los ensayos a diez años, resulta inferior al 1%, valor que normalmente se puede suponer como umbral mínimo, por debajo del cual no se produce daño alguno.

El "Método para el análisis de rellenos en cuñas de transición. Ejemplo práctico", de D. Jesús A. Labarra, D. Francisco J. Encinas y D. Jesús Santamaría, de Corsán-Corviam, describe un método para el análisis comparativo de rellenos en estructuras enterradas, que consiste en obtener un indicador de las tensiones y deformaciones que se generan en el firme mediante un modelo de elementos finitos. A partir de leyes de fatiga, se obtiene el número de "cargas" compatible con las tensiones y deformaciones obtenidas previamente. La capa de firme que presente menor valor será aquella que defina su comportamiento global. Así, al tener un indicador para cada capa de firme, se puede mejorar el comportamiento global del conjunto variando las características del relleno y mejorando aspectos como el económico, puesta en obra, etc.

En el caso concreto expuesto en la intervención, se concluyó en que sería conveniente sustituir un relleno tomado como patrón ("sandwich" en trasdós de galerías y montera de tierras compactada al 95% del Proctor normal), por un relleno uniforme compactado al 98% del Proctor modificado, tanto en el trasdós de la galería como en la montera de las tierras. El relleno uniforme estaría formado por material procedente de la excavación, dispuesto en tongadas de 30 cm y compactado al 98% del modificado, debiendo satisfacer el material baio estas condiciones un CBR mínimo de 17. El ejemplo demostró que se puede obtener un relleno con un mejor comportamiento para el firme que el fijado como patrón, proporcionando una optimización económica y de puesta en obra.

Segunda sesión: "Cimentaciones

La primera de las ponencias estuvo a cargo de D. Álvaro Parrilla, del Ministerio de Fomento, quien expuso "La Guía de cimentaciones en obras de carretera de la Dirección General de Carreteras. Aspectos básicos". El autor resumió el contenido de la quía y señaló algunos de sus aspectos más novedosos, como la adopción de la metodología de cálculo de la Instrucción sobre las acciones que hay que considerar en el proyecto de puentes de carretera-IAP, de obligado cumplimiento. Así mismo, el tratamiento de cuestiones específicas sobre el proyecto, construcción, auscultación y conservación de las obras de cimentación más frecuentes, incluyendo la definición de coeficientes de seguridad en función del tipo de obra, modo de fallo y combinación de acciones. También, la inclusión del concepto


de cimentación en obras de carretera con un sentido amplio y la adecuación de la normativa vigente a la europea.

Posteriormente, destacó la introducción teórica (apéndice 1) de los métodos de coeficientes de seguridad parciales en proyectos geotécnicos relacionados con cimentaciones y el desarrollo de aspectos matemáticos de infrecuente tratamiento en este tipo de obras.

"La utilización de los programas de cálculo de estabilidad de taludes en la determinación de las cargas de hundimiento de cimentaciones superficiales", de D. Antonio Soriano Peña, de la Universidad Politécnica de Madrid, y D. Jesús Galindo, de Ingeniería del Suelo, S.A., explica que los métodos de equilibrio límite que se utilizan normalmente en el análisis de problemas de estabilidad de taludes ofrecen serios problemas cuando se utilizan para calcular cargas de hundimiento de cimentaciones superficiales, pues requieren la definición previa de la forma de la línea de rotura y suponer alguna condición adicional que permita conocer el esfuerzo cortante entre rebanadas contiguas. Por ello, se contabilizan tres fuentes de error; forma de la línea de rotura, hipótesis sobre los esfuerzos de corte y falta de condiciones de equilibrio. Como consecuencia de ellas, los métodos de equilibrio límite conducen a resultados que son diferentes de los que se obtienen por otros métodos. Pueden sobreestimar la carga de hundimiento como ocurre en el caso = 0 en todos los métodos que suponen una línea de rotura circular, o pueden inducir a un error de signo incierto cuando

π 0. En el primero de los casos, la resistencia en la línea de rotura no depende de la distribución de tensiones en la masa deslizante, y, por eso, el único error procede del hecho de suponer una línea de rotura que no es acorde con las leyes de la mecánica racional. Este error, es sólo del orden del 7%, sobrevalorando la carga del hundimiento, cuando se supone que la línea de rotura es circular. Advirtió, a continuación, que ese error puede ser mayor cuando, aún siendo = 0, el terreno no es homogéneo. Pero, cuando se acierta con la línea de rotura, el resultado es exacto.

Como relator de comunicaciones, intervino D. Davor Simic Sureda, de Agromán, quien clasificó las 15 comunicaciones por temas, resumiendo que sobre proyectos de cimentaciones se habían presentado 4 comunicaciones, sobre ejecución de cimentaciones 1, sobre proyecto y ejecución de reciclados o refuerzos de cimentaciones 2, sobre problemáticas en terrenos con cavidades 4 y otras 2 sobre cimentaciones de terraplenes en suelos blandos. El Sr. Simic fue desgranando las comunicaciones recibidas, una a una y comentando sus particularidades. Por ejemplo y dentro de la ejecución de cimentaciones,

sobre la presentación del Sr. Burbano y la Sra. Cervera, presentó los útiles de perforación para pilotes de extracción de 2 m de diámetro (hélices y cazos con y sin widia), así como sus rendimientos.

Del tema 3 y de la propuesta del Sr. Armijo y otros, se centró en la evolución de los asientos de las pilas y el recalce efectuado mediante columnas de jet-grouting; y de la de los Sres. Burbano y Portillo, expuso el corte geológico del terreno bajo el muro y su refuerzo con columnas de jet grouting, las profundidades del tratamiento, el tratamiento y la actuación en la ladera, etc. Del tema 4 y sobre la comunicación del Sr. García-Arango y otros, el perfil geotécnico, la sección transversal del cajón y los módulos rigidos de 20 m de longitud, etc.

A continuación, se presentó la "Ejecución de un cajón bicelular en condiciones de cimentación difíciles y bajo un relleno de autovía de 30 m de altura", de D. Ignacio García-Arango, de la Demarcación de Carreteras del Estado en Asturias, y D. José M. Gutiérrez Manjón y D. José A. Leira Velasco, de FCC Construcción, que expuso las hipótesis consideradas para el cálculo del cajón, los movimientos estimados, su proceso constructivo, el control establecido y los movimientos finalmente producidos del cajón, parte de la solución adoptada en el proyecto del tramo Caravia-Llodio, de la autovía del Cantábrico, que, en principio, contemplaba la construcción de un viaducto para cruzar el arroyo del Lloreo. Las dificultades hicieron que se reconsiderara la solución, sustituyendo el viaducto por un relleno de 30 m de altura. Para dar paso al arroyo y a un camino de servicio se proyectó bajo el relleno una estructura en cajón bicelular de 13 m de altura, con el arroyo situado en la célula inferior, que se dividió en módulos de unos 20 m de longitud, con juntas provisionales abiertas para permitir movimientos diferenciales durante la ejecución del relleno. De las deformaciones finales, se dedujo que los máximos asientos se producían en la mitad norte del relleno, que el asiento máximo alcanzó los 27 cm, un 15% superior al estimado, y que los asientos diferenciales transversales producidos están comprendidos entre 4 y 6 cm, sin llegar al umbral máximo establecido. Los asientos diferenciales longitudinales quedaron comprendidos entre 3 y 16 cm y el máximo giro de una junta fue del 0,97%, cerrándose 13 cm.

D. Daniel Muñoz González, de FCC Construcción, y coautor de la comunicación junto a D. José A. Leira, presentó el "Tratamiento de suelos blandos en la autovía Mieres-Gijón. Tramo alto de la Madera-Gijón". En ella informó que el terraplén previo al enlace de la autovía Minera con la ronda sur de Gijón tiene 17 m de altura; y el espaldón izquierdo y parte del nú-

cleo se apoya sobre suelos aluviales arcillosos, blandos y saturados, de 4 a 6 m de potencia. Por ello fue necesario ejecutar un tratamiento del terreno para acelerar los asientos y, al tiempo, reforzar el terreno, permitiendo construir el terraplén a un ritmo adecuado y con un coeficiente de seguridad admisible. Tras explicar los diferentes tipos de tratamiento que se iban adecuando a la variabilidad de la altura del terraplén y del espesor de suelos blandos, destacó la ejecución de columnas de grava mediante vía seca y la realización de una prueba de su carga.

La consolidación de los suelos blandos se controló mediante placas de asiento y piezómetros de cuerda vibrante y en la obra se apreció que los asientos fueron algo inferiores a lo estimado y la consolidación más rápida de lo previsto. Después de los dos periodos de ejecución, el 95% de consolidación se produjo en menos de 1 mes.

D. Germán Burbano Juana y Dña. María Cervera Galván, de Dragados, Obras y Proyectos, S.A., presentaron "Ejecución de pilotes de gran diámetro en roca dura. Viaducto sobre la ría de Ferrol", informando sobre los trabajos de investigación, análisis y cálculo de la cimentación mediante pilas-pilote de este viaducto, el control durante su procedimiento de ejecución y la posterior auscultación a base de ensayos sónicos y sondeos en la punta.

Con el fin de evitar las dificultades en la construcción de la cimentación, se proyectó el viaducto con pilas-pilote para evitar el tablestacado, la remoción del fondo de la ría y la construcción de encepados. La cimentación permite crear una pila única formada por dos pilotes de 2 m, con una separación mínima entre sus centros de 3 m. El ponente destacó el control que se siguió en los rendimientos de perforación y en consecuencia las valoraciones que se realizaron de ellas. En el sustrato resistente estableció un criterio diferenciador de terrenos, destacando que la velocidad de avance del esquisto sano grado III es igual a dos veces la del esquisto sano grado II, y que la utilización del Cazo más Hélice de widia es comparable al cazo de widia en suelos duros, pero no así en los blandos.

De un total de 102 pilotes constituyentes de la cimentación, se perforaron 2 089 m. La longitud media de los pilotes fue de 20,5 m con una desviación media de la estimada del orden del 5%.

El "Analisis comparativo de la cimentación de estribos de estructuras en suelos blandos" fue presentado por D. Francisco Rubio y D. Juan C. Hernández del Pozo, de la Universidad de Granada; D. Isidro Ocete y D. J.C. Hernández, de Geotécnica del Sur, S.A.; y D. Ramón García, de la Junta de Andalucía. Tras el estudio de alternativas para estribos de obras lineales con grandes cargas, desde el punto de vista geotécnico, para materiales limosos de baja compacidad, se concluyó que no se recomiendan cimentaciones superficiales o semiprofundas, del tipo de zapatas corridas o pozos de cimentación respectivamente, dada la baja compacidad portante del terreno. Además, el criterio de carga admisible por asientos es más restrictivo que el criterio por rotura para los tipos anteriores. En cualquier caso, se tiene que optar por cimentaciones profundas.

Así mismo, una cimentación por pilotes de gran diámetro cumple los criterios resistentes y deformacionales, con el inconveniente de que la carga que transmite el terreno es muy inferior a su tope estructural, por lo que se sobredi-

D. Germán Burbano expuso la "Ejecución de pilotes de gran diámetro en roca dura. Viaducto sobre la ria de Ferrol".

mensiona obligatoriamente el elemento y encarece el sistema.

Otra conclusión fue que si el terreno no aumenta su competencia con la profundidad obliga a adoptar grandes longitudes para pilotes de gran diámetro y que la solución por micropilotes cumple técnicamente con las necesidades del diseño, pudiendo movilizar en el terreno resistencias similares a su tope estructural, por lo que se optimiza la sección.

El éxito de las jornadas se subrayó con más de 280 congresistas

Para los ponentes, el criterio económico desequilibra la balanza entre las dos alternativas.

"Cálculo de asientos mediante dilatómetro Marchetti y Piezocono", fue presentada por D. Marcos Arroyo; D. Ramiro Gómez-Escoubes y Dña. Teresa Mateos, de Iberinsa; D. J. M. Martínez, del CEDEX; y D. Marcelo Devincenzi, de Igeotest. En ella, se informa que en el delta del Llobregat coinciden una gran actividad constructiva y una gran potencia de depósitos cuarternarios, que comprenden un acuifero profundo de gravas y arenas, otro arenoso y casi superficial y un acuitardo que los separa. Los materiales de este último presentan compresibilidades medias a altas a asientos de magnitud considerable. Para evitar los problemas que tales asientos pueden causar, las soluciones de precarga o sobrecarga son típicas. El proyecto de precarga necesita de herramientas para evaluar su magnitud y desarrollo temporal de los asientos. Esta comunicación presentó un método alternativo al edómetro, basado en ensayos in situ, validándolo mediante los resultados de una prueba de carga.

En cuanto al método de cálculo de asientos, los asientos totales generados en el terreno se calculan como la suma de los asientos debidos a la consolidación primaria más los de la secundaria. Mediante el método de evaluación de asientos, basado en los resultados de los ensayos DMT, se obtiene el asiento primario del terreno, que incluye el inmediato y el de consolidación primaria. El método consiste en efectuar una integral de deformaciones a partir de un perfil de módulos elásticos con lo que se aprecia que el modelo de comportamiento implícito es elástico y unidimensional, es decir, sin deformación lateral o bajo el supuesto de coeficiente de Poisson nulo. Finalmente, la comunicación deduce, entre otras conclusiones, que los métodos de estimación de asientos basados en ensayos in situ tienen en el DMT una herramienta muy eficaz, cuyo valor au-

menta cuando se combina con el CPTu.

D. Julio C. Fernández-Nespral, del Ministerio de Fomento; D. Carlos Oteo, de la Universidade da Coruña; y D. Francisco J. Samper y D. Lucas J. Martín, de Geotecnia y Cimientos, S.A., presentaron las "Soluciones geotécnicas para la cimentación de un viaducto situado en calizas carstificadas". La autopista Gijón-Vilaviciosa cuenta con un tramo, Infanzón-Grases, con un viaducto de unos 600 m de longitud, algunos de cuyos apoyos descansan en cimentaciones superficiales sobre calizas carstificadas, cuya ejecución presenta una problemática peculiar. El relleno de estas cavidades tiene la dificultad de que cuanto más fluido sea el material aportado (lechada o mortero) más fácil resultará su inyección, pero es posible que se aleje del punto de aplicación y no cumpla su misión; y, por otra parte, cuanto menos dócil sea este material menos se desplazará, pero será más difícil su invección.

En el caso que les ocupó, se realizó una inyección de un mortero de consistencia blanda (cono de Abrams de 8 a 10 cm) gracias a una maquinaria desarrollada para tal fin, que permitió el relleno de las grandes cavidades existentes sin que el mortero inyectado se desplazara sensiblemente del área de inyección. Así, a pesar de la gran entidad de las cavidades, se consiguió la mejora del terreno de apoyo, posibilitando la cimentación directa de las dos pilas ubicadas en esta zona.

"Recalce de la cimentación de un puente de sillería mediante columnas de jet-grouting" fue presentada por D. Gustavo Armijo y D. Eduardo Martín, de Geocisa; D. Jorge Cañizal, D. Domingo Lorenzo y D. César Sagaseta, de la Universidad de Cantabria; Dña. Susana Luzuriaga y Dña. Henar Calderón, de la Diputación Foral de Guipúzcoa; y D. Pablo Ruiz, del Silga, S.L. En ella, se mostraron las medidas proyectadas y el proceso de ejecución, junto con la evolución de asientos medidos, antes y durante el recalce, del puente sobre la ría de Deba (Guipúzcoa, 1866), que presentaba problemas derivados de la baja capacidad de soporte del terreno de cimentación, que había

causado asientos de 1 m, y un notable giro hacia aguas abajo en una de sus pilas.

El proceso cumplió con los objetivos previstos en proyecto, en cuanto a la creación de una pantalla continua de columnas de *jet-grouting*, que transmita la carga de la pila a estratos competentes profundos y que, a la vez, la proteja de socavaciones en el futuro. Como la estabilización de movimientos se produjo tanto en la pila recalzada como en las demás pilas y en el estribo adyacente, no fue necesario extender el recalce a otras zonas del puente.

Tras subrayar los controles habidos, se finalizó explicando que la solución en este caso presentó una gran ventaja sobre la tradicional con micropilotes, ya que la vinculación con la cimentación existente se hizo directamente por compresión y no por adherencia. Además, este recalce, a diferencia de la alternativa con micropilotes, se podía extender debajo de los tajamares.

"Empleo de geosintéticos en terrenos con tendencia a sufrir hundimientos", presentada por Dña. Mar Arce, de Huesker, S.A., expuso la solución innovadora utilizada en Gröbers (Alemania) para construir un terraplén sobre una zona de antiguas minas de carbón, en la que se propuso puentear las zonas con riesgo de hundimientos con un sistema combinado de aviso y refuerzo, que consiste en 2 capas de geomalla de alta resistencia a tracción y alto módulo elástico, con fibras de aramida longitudinales y de PVA en dirección transversal, trabajando a tracción reforzando el terraplén. El conjunto resiste el hundimiento del terreno a lo largo de un mes, plazo suficiente para que el sistema de aviso se active al detectar el movimiento en la geomalla y recuperar la capacidad de soporte del terreno de la forma que se considere más adecuada. La capa de aviso registra la localización exacta del movimiento por medio de un sistema informatizado, obteniéndose así un control permanente de la situación.

La baja deformación, la alta resistencia a tracción y la buena interacción con la mezcla granular garantizan una alta resistencia del terreno en caso de derrumbamiento, consiguiéndose una solución óptima de diseño con una solución técnica eficaz, de sencilla puesta en obra y un reducido coste.

Jueves 25 de marzo

Tercera sesión: "Desmontes y contención de laderas"

Intervino D. César Sagaseta, de la Universidad de Cantabria, presentando la ponencia "Desmontes y corrección de laderas: Análisis de estabilidad", exponiendo algunas consideraciones sobre el análisis de estabilidad de taludes en desmonte, tanto en rocas como en suelos. Los aspectos considerados se

refierieron a la geometria de los taludes, tipo de inestabilidad, condiciones de agua intersticial y parámetros resistentes, desarrollando toda su exposición basada en casos reales. Entre otros, en cuanto a las rocas, contempló casos de deslizamiento planos y en cuña, vuelco de estratos y caída de bloques. En suelos, la influencia del agua y la presencia de deslizamientos preexistentes. Entre otras, explicó la utilidad de las clasificaciones geomecánicas como la RMR de Bieniawski, Q de Barton y la SMR específica de taludes de Romana. También afirmó que la determinación de las características mecánicas de los planos de discontinuidad requiere de la realización de ensayos de corte, in situ o en laboratorio, y que en desmontes importantes pueden hacerse también estos ensayos, aunque lo más habitual es estimar el ángulo de rozamiento a partir de examen del estado de los planos, su apertura, su relleno y rugosidad, aplicando algunos de los criterios existentes, siendo en este tema el más útil el de Barton.

También, más adelante, comentó que una de las posibles soluciones en casos de deslizamiento plano es la de tender el talud con la inclinación de la estratificación. Sin embargo, en casos con oblicuidad moderada, esta solución plantea problemas de definición.

Como relator de comunicaciones, intervino D. Claudio Olalla, del CEDEX, quien hizo una presentación resumen caracterizando y subrayando los temas más importantes de las 26 comunicaciones recibidas para esta sesión, dividiéndolas en 10 de tipo teórico, 12 de tipo más práctico y 4 más relacionadas con los emboquillados. De ellas, se presentaron 3 de carácter más teórico, las que corresponden a Torres y otros, Castro y De la Torre y otros; y otras 5 más prácticas, que se corresponden con las presentaciones de Franesqui, García Arango y otros, Portillo, Román y González del Río. Estas últimas se reflejan a continuación, invitando a nuestros lectores al estudio de las restantes que aparecen publicadas en el libro de ponencias, que se editó con motivo de las jornadas.

Entre otras conclusiones, expuso que los desmontes son como los trajes a medida; y los coeficientes de seguridad, un tema que hay que seguir estudiando en el futuro. Precisamente, de las comunicaciones subrayó el tipo de desplazamientos que estudian (vuelco, general, reptación, subvertical, sucesivos, cuñas, pantallas flexibles, membranas flexibles y muros escolleras), destacando y comentando sus coeficientes de seguridad en cada uno de los casos presentados.

A continuación, D. Miguel A. Franesqui, de la Universidad de Las Palmas de Gran Canaria, presentó "Una solución para la estabilización de taludes verticales en la ampliación de una plataforma sobre macizos rocosos fracturados: estructuras de contención y sostenimiento de ejecución sencilla y elevada integración ambiental", en la que presentó una solución para la estabilizacion de taludes verticales y el sostenimiento de la ampliación de una plataforma sobre macizos rocosos fuertemente fracturados, en las actuaciones de mejora de trazado de un tramo de la GC-503 en Gran Canaria. Por su complicada orografía, la carretera discurre por una estrecha divisoria de profundos barrancos, cuya anchura se reduce en algunos puntos a prácticamente la plataforma de la carretera. La solución ha consistido en la ejecución de unos muros de gravedad de hormigón en masa, con paramento a cara vista en mampostería, utilizada como encofrado perdido, y una base de cimentación reducida adaptada a la forma de la ladera mediante anclajes pasivos sistemáticos adherentes e inyectados con lechada de cemento en la base de la obra de fábrica. También se ha previsto la estabilización del talud rocoso vertical bajo los muros, así como de los adyacentes.

Se trata de un sistema estructural que combina los muros tradicionales con un refuerzo del macizo rocoso fracturado mediante inclusiones de barra pasivos, que consigue una sencillez de ejecución con técnicas de cosido del macizo por medio de inclusiones, consiguiendo una gran adecuación ambiental y paisajística de la obra.

"Estabilización del desmonte de Torre en la autovia del Cantábrico (Tramo Caravia-Llovio)" fue presentada por D. Ignacio García-Arango, del Ministerio de Fomento; por D. José Manuel Gutiérrez, de FCC Construcción y D. Emilio Bayón, de Inocsa, informando que en la zona del desmonte de Torre, la traza discurre a media ladera y los taludes proyectados en desmonte y en relleno alcanzan alturas máximas de 55 y 45 m, respectivamente. Los terrenos están constituidos básicamente por areniscas y lutitas bastante tectonizadas y replegadas. Cuando se llevaba excavado el 70% del desmonte, se manifestó una inestabilidad importante en la ladera, detectándose una grieta de apertura decimétrica, que, situada a unos

60 m por detrás de la coronación del talud, discurría paralela a la traza a lo largo de unos 300 m. Esa inestabilidad afectaba a un volumen de terreno de unos 1,5 millones de m³. Eso obligó a realizar unos estudios, a instalar una instrumentación para determinar la geometría y las causas de la inestabilidad, y un conjunto de actuaciones que conformaron su solución y que implicaron sobrexcavaciones, drenaje, ajuste de trazado y muros.

Resumidamente, la estabilización supuso la excavación de unos 200 000 m3 en la zona superior de la ladera, creando dos bermas adicionales y aumentando la altura total del talud a unos 70 m, fijándose el arranque de la excavación en el plano de contacto con las cuarcitas sanas. Así mismo, el desplazamiento de la traza unos 5 m hacia el valle y la ejecución de un muro de tierra armada, de unos 5 m de altura, situado en el borde exterior de la calzada que discurre en relleno. También la ejecución de un muro anclado de H=5 m, constituido por bataches para la estabilización local del pie del talud (anclajes de 90 t, L= 11-16 m, espaciado 1 ud/2,5x2,5 m). Además, se ejecutaron drenes californianos en la zona baja del talud (L=40-50 m; 1 ud/10-15 m).

Posteriormente, D. Juan Antonio Torres Vila, de Geobrugg Protection Systems, presentó una serie de tres comunicaciones de la que era autor junto a D. Miguel A. Torres y D. Jesús M. Llano, también de la misma empresa. La primera fue el "Procedimiento para la selección del tipo más adecuado de barrera dinámica de protección contra caída de rocas". Partiendo de la experiencia en España, Francia y Suiza, la comunicación propuso un procedimiento cuantitativo para la definición, identificación y clasificación de las barreras dinámicas sobre la base de una información homogénea e independiente del fabricante o sistema empleado. El procedimiento de cálculo, denominado "Dynamic", parte de los resultados de los programas de simulación de caídas de rocas para determinar las caracteristicas que debe satisfacer el sistema que se debe instalar. El procedimiento permite definir el sistema de menor coste

global, garantiza un grado de protección durante toda su vida y llena un vacío existente entre el cálculo y la selección del sistema para una frecuencia de mantenimiento y nivel de riesgo determinados, permitiendo la selección de pantalla dinámica de protección más adecuada, a partir de los cálculos de

Es siempre muy importante, estabilizar los movimientos que se presenten en el talud, a medida que se vayan produciendo

energía, trayectorias y frecuencias de los desprendimientos, que es absorbida por una reserva de energía, entre la del diseño y la capacidad nominal del sistema, intervalo de energía que es consumido por impactos sucesivos en el periodo de tiempo entre operaciones de mantenimiento.

Más adelante, presentó el "Procedimiento de diseño de sistemas flexibles de estabilización de taludes", definiendo lo que constituye y se debe entender por un sistema flexible de estabilización de taludes, así como la evolución y desarrollo que han sufrido estos sistemas en los últimos años, basado en la experiencia de aplicación y estudios más completos de las diferentes membranas.

El procedimiento de diseño permite la selección del sistema, y establece la disposición y dimensiones de los componentes para satisfacer un determinado soporte de diseño, de acuerdo a los empujes ejercidos por el terreno, el tipo de anclajes y nivel de deformacion admitido. El procedimiento de diseño de un sistema flexible parte del soporte (kN/m²) que es necesario aplicar a la superficie del terreno para estabilizar el talud o ladera con un adecuado factor de seguridad, debiendo satisfacer el criterio de desplazamiento límite. El procedimiento da solución a la aplicación de membranas flexibles para la estabilización de taludes combinada tanto con anclaies pasivos como activos.

Finalizó sus intervenciones con el "Cálculo de empujes pasivos sobre membranas flexibles. Versión III", que tiene por objeto la realización de un cálculo de mayor precisión, que las versiones anteriores de la misma empresa, de los valores de empuje del terreno, eliminando dos hipótesis empleadas con anterioridad: la presión de estabilización se deja variable con la altura y las fuerzas de interacción entre bloques paralelas a la dirección de los anclajes, que se había considerado muy pequeña y se había despreciado, introduciéndose en el cálculo.

Entre sus conclusiones, se destaca que los valores de soporte necesarios crecen rápidamente hasta su valor estable y que los resultados de la nueva versión son iguales para la cuña enésima, tanto considerando sobrecarga de la ladera como no, por lo que en la aplicación práctica del modelo este efecto puede despreciarse. Además, los empujes del terreno, en los casos que no se considera cohesión, en la versión 3 son entre un 10 y un 20% más bajos que los obtenidos en la versión 2, en la que los cálculos obtenidos se encuentran en todos los casos del lado de la seguridad y son del mismo orden de magnitud que los obtenidos con la versión 3.

D. Evaristo Portillo, de Intecsa-Inarsa, y D. José A. Gutiérrez, de Dragados Obras y Proyectos, presentaron la "Estabilización de un talud de gran altura con inestabilidades sucesivas inversas", informando que en el tramo Mieres-Langreo, de la autovía Minera, se excavó un talud de más de 60 m de altura en una formación del Carbonifero, constituida por alternancias de pizarras, areniscas y capas de carbón y pizarras carbonosas, con recubrimiento coluvial y roca meteorizada de unos 15 m de espesor. En el talud se situaba una carretera próxima a la coronación para el acceso a caseríos. Desde el inicio de la excavación hasta la rasante de la autovía, se fueron produciendo deslizamientos, a medida que se excavaba el talud, y afectando a cada horizonte excavado y progresivamente más profundo. La comunicación presentó el análisis de las investigaciones, así como los de estabilidad y las medidas que se adoptaron, y que consistieron en mantos y muros de escollera, pasando por gunita armada y vigas y muros ancla-

Tras explicar cada una de las incidencias surgidas y las medidas de estabilización adoptadas, los autores concluyeron que las formaciones carboniferas, constituidas por litologías alte-

rantes, con niveles o paquetes de mala calidad geotécnica y en presencia de agua, aun con una disposición estructural regular y dispuesta para su estabilización, dan lugar a importantes movimientos de laderas, cuyas superficies de rotura presentan una geometría mixta, en parte a través de la masa rocosa, en parte a través de los planos de mayor debilidad que suelen ser las capas carbonosas. Por ello, es siempre muy importante, cuando sea posible, estabilizar los movimientos que se presenten en el talud, a medida que se vayan produciendo para reducir al mínimo las medidas estabilizadoras.

"La estabilidad de un gran desmonte en la autovia del Cantábrico (Pesués) ligada a la técnica de excavación" fue presentada por D. Fernando Román, de Intecsa-Inarsa. En el tramo Lamadrid-Unquera de la citada autovía se produce un desmonte en un macizo rocoso cuvas superficies de estratificación buzan hacia la excavación. Para la estabilización de un talud 1H:3V -que producía el menor impacto ambiental- se plantearon soluciones de anclajes como alternativas a una suavización del talud, que fue inevitable abordar en un momento de la excavación. Pese al cuidadoso proceso de excavación con voladuras suaves de contorno, se iniciaron roturas planas de notables dimensiones que dejaban en equilibrio estricto a otros bloques descalzados.

Entre otras afirmaciones, dijo que el

análisis de estabilidad estaba condicionado por la existencia de dos juntas de estratificación abiertas con rellenos arcillosos y húmedos, la existencia de niveles margosos en capas por encima de éstas y en un tercio final del desmonte, y en la escasa presencia de juntas transversales que limitaria la generación de bloques inestables. Tras explicar la toma de datos de buzamiento y reanálisis de la estabilidad y justificar el uso de voladuras, el talud, finalmente, tuvo que ser excavado desde la coronación con un talud de 40° por encima de la junta de estratificación inferior y complementarse con un bulonado sistemático para combatir los riesgos de deslizamiento de capas con un rumbo ligeramente oblicuo en la mitad occidental del talud. En la parte inicial, la oriental, la ausencia de juntas abiertas, es decir, el carácter masivo del macizo rocoso, pemitió mantener un talud 1H:3V, aunque complementado con una serie de anclajes que garantizaban la seguridad.

D. Daniel Castro, D. Francisco Ballester y D. Emilio J. del Bosque, de la Universidad de Cantabria, presentaron la comunicación "Desarrollo de una red de cables para un sistema de protección de taludes", proyecto de investigación desarrollado por GITECO, de la Universidad de Cantabria, para Malla Talud Cantabria, S.L. y cofinanciado por Sodercan. La comunicación presentó los pasos seguidos para el diseño de la

grapa de unión de los cables y dos tipos de ensayos realizados para analizar
las características resistentes y la capacidad antideslizante de los cables, así
como la pieza diseñada con los resultados obtenidos en ellos. Posteriormente,
analizaron los valores conseguidos en
los ensayos de carga distribuida y de
carga puntual, para terminar presentando los modelos físicos analizados para
el empleo de la red de cables en un sistema flexible de estabilización de taludes de materiales sueltos.

La comunicación finaliza en que, en definitiva, para el cálculo de las mallas, una vez obtenida la presión que es necesaria para estabilizar un talud con un cierto coeficiente de seguridad, se estimará qué malla es la más apropiada en función de su capacidad de soporte, deformaciones, economía, etc.

"Taludes de Piedrafita" fue presentada por D. Jesús González, de Ingeniería del Suelo, S.A., informando que la construcción del tramo de acceso norte a Galicia desde la Meseta, que asciende desde el valle del río Sil hasta el puerto de Piedrafita, ha presentado una amplia problemática en la estabilidad de los taludes de desmonte.

Inicialmente, existía una carretera muy estrecha y de trazado deficiente que discurría por el fondo del valle. En los años 70 se construyó una nueva, de dos carriles, situada en una cota algo más elevada, en la que aparecieron algunos desmontes que, pese a ser de altura limitada, presentaron problemas de estabilidad y desprendimiento durante y después de su construcción.

Las actuaciones correctoras no fueron uniformes y desde luego, lo que si quedó claro fue la importancia de que estas medidas debían irse aplicando según se iba avanzando con la excavación. Entre ellos varios reatulazados reforzados con gunita y bulones, así como bermas en desmontes; drenaje: impermeabilización de bermas y revestimiento de cunetas de coronación de desmonte y en su pie, protección de bajantes de agua, drenes californianos, etc.; escollera: refuerzos y revestimiento de escollera en el pie, construcción de muros con escollera hormigonada; refuerzos: diversas protecciones de qunita para evitar la formación de pequeñas inestabilidades, pequeñas perforaciones para evitar sobrepresiones, refuerzos combinando gunita y bulones, etc. Además, explicó algunas actuaciones singulares para la estabilización.

Finalizó con una actuación en un segundo desmonte, que necesitó de una actuación singular, en la boca este del túnel de Trabadelo, en el que la inestabilidad del manto coluvial se resolvió disponiendo una malla de alambre de acero de alto límite elástico y unas actuaciones que se dividieron en cuatro fases.

"Análisis del riesgo de caída de cuñas" fue presentada por D. Luis de la Torre, D. Miguel Alonso Berrio-Atergortúa y D. Jesús Santamaría, de Corsán-Corviam, S.A. La comunicación analiza el coeficiente de seguridad determinista y su relación con la probabilidad de fallo, centrándose en el caso de cuñas formadas en taludes de roca. Con un análisis estadístico subrava el hecho de que asumir coeficientes deterministas altos no implica necesariamente que las probabilidades de fallo sean pequeñas y se sugiere un método para estimar el riesgo de caída de cuñas durante la vida útil del talud por efecto de las lluvias, por medio de un cálculo reiterativo, siguiendo el método de Hipercubo Latino.

Para los ponentes, una mejora de la situación se consigue adoptando los tamaños de muestras necesarios para obtener un error en la media previamente definido. Por ello, no resulta posible a priori dar un valor del coeficiente de seguridad determinista que asegure que el resultado va a tener una probabilidad de fallo menor que una dada, pues requiere un estudio pormenorizado para cada caso; y este valor será distinto, en general, para cada uno de ellos, lo que lleva a la necesidad de efectuar una simulación estadística del problema.

Los valores de coeficientes de seguridad utilizados en la práctica (1,7-2) no garantizan las probabilidades de fallo anual exigibles (en torno a 10-3).

Además, la probabilidad de caída de cuñas en un talud es creciente con la vida útil de la obra; sin embargo, la frecuencia anual estadística de caídas es decreciente con el tiempo transcurrido. Así mismo, realizando pequeñas modificaciones en el talud (tendiéndolo ligeramente) se podría reducir la probabilidad de caída de cuñas.

Cuarta sesión: "Túneles"

Intervino D. Manuel Romana Ruiz, de la Universidad Politécnica de Valencia, con la ponencia "Túneles construidos por métodos convencionales". La ponencia, que fue complementada por diversos y animados comentarios y experiencias del Sr. Romana, se refiere a los túneles no construidos por tuneladoras (no es posible que todos los túneles se excaven mecánicamente) y, tras algunas circunstancias del llamado Nuevo Método Austríaco, enmarca las condiciones generales del uso de tuneladoras para túneles de carreteras, en los casos en que se aconseja la construcción por métodos convencionales. La ponencia discute el uso de la clasificación RMS y la subdivisión de sus 5 clases en 10 subclases. Así mismo, presenta unas recomendaciones indicativas para la excavación (longitud de pase, partición de la sección y método de excavación), para el sostenimiento (longitud, densidad y espaciamiento de los bulones; espesor y número de capas de hormigón proyectado; uso de mallazo y/o fibras metálicas; tipo y espaciamiento de cerchas, uso de Bernold y/o paraguas de presostenimiento) y para el emboquillado (partición de la sección; paraguas; longitud, densidad y espaciamiento de bulones en el talud frontal; hormigón proyectado; red y/o

El profesor Romana planteó los límites de la excavación mecánica (problemas de gálibo y tamaño, económicos y de plazo, rendimientos, etc.), así como el uso de clasificaciones geomecánicas (Bieniawski, Barton, etc.), para pasar a las recomendaciones de excavación y sostenimiento, uso de las clasificaciones en las boquillas de los túneles, recomendaciones de emboquillado y sus comentarios.

Mesa que presidió la 4º sesión. De izquierda a derecha, Sres. Del Cañizo, López Guarga, Romana y Mendaña.

D. Felipe Mendaña, de SPICC, presentó la "Caracterización de los terrenos para el proyecto y construcción de túneles carreteros con tuneladora" en la que expuso los avances conseguidos en los últimos proyectos de grandes túneles que se van a construir con tuneladoras, detallando los trabajos de reconocimiento en suelos o rocas, tanto para la etapa de proyecto como los actualmente posibles desde el frente de avance. Posteriormente destacó algunas obras realizadas con tuneladoras, como el Periférico Norte de Lyon, que es una solución bitubo con galerías de conexión a distancias entre 200 y 400 m; soluciones de un solo tubo de dimensiones importantes con secciones divididas en dos niveles, como el Túnel Este de la A-86 del Segundo Periférico del Gran Paris, etc.

En cuanto a la caracterización geotécnica del terreno, los trabajos comprenden los reconocimientos y ensayos in situ o en laboratorio y los datos del entorno. Tras decir que los trabajos correspondientes a la primera etapa (proyecto) deben cubrir la totalidad de dicho objetivo, imprescindible e incuestionable, informó que se llevan a cabo con conocimientos insuficientes en muchas ocasiones; en la segunda etapa, construcción,

los plazos disponibles son siempre limitados, por lo que suele darse que, en el momento de la adjudicación de la obra, el conocimiento del terreno se limita a lo recogido en la etapa de proyecto. Más adelante, se detuvo en los proyectos de túneles en suelos, destacando los parámetros que hay que determinar: granulometría; características físicas in situ (humedad y densidad) y resistencia a la compresión simple (RCS). Tras ello, explicó cómo deben realizarse los trabajos de reconocimiento, pasando a los proyectos de túneles en roca, deteniéndose en los trabajos de reconocimiento previo, como son los ensayos de penetración dinámica y campañas de sondeos eléctricos y sísmicos. La última parte de su intervención se dedicó al reconocimiento durante la construcción de un túnel con tuneladora, analizando los sondeos de reconocimiento desde el frente y otros datos y parámetros controlables desde el interior.

"Consideraciones sobre el diseño de túneles y el cálculo de revestimientos" fue el tema presentado por D. Luis del Cañizo, de Esteyco, quien presentó una serie de comentarios generales relativos al diseño de un túnel, criticando la falta general de realismo de los procedimientos teóricos de cálculo del revestimiento de los túneles en mina por métodos estructurales, así como algunas dificultades prácticas de aplicar en proyectos el método de elementos finitos, aportando recomendaciones para su uso. Además, indicó cuándo es conveniente o competitivo el empleo de falsos túneles, y, respecto a su cálculo, se comentaron la diferencia conceptual entre los puntos de vista estructural y geotécnico, así como algunas recomendaciones para su proyecto y cálculo.

Entre las muchas e interesantes aportaciones de la ponencia, en su primera parte, se destaca que lo más importante del proyecto es definir su sistema constructivo óptimo. Tras subrayar que la calidad debe darse en el conjunto de todo el proceso, afirmó que en algunos casos el mecanismo administrativo del que se dispone no deja la flexibilidad mínima que precisa el proyectista para optimizar su diseño con el trazado a la escala de detalle. También afirmó que cuaquier informe geológico o geotécnico debe ser suficiente, confiable, cualitativamente correcto y prever los imprevistos. Otra de sus afirmaciones fue que se ha abusado del cálculo tradicional estructural de hace décadas, y que los túneles con revestimiento de ladrillo, de sillería y de dovelas prefabricadas tienen juntas y no llevan armadura continua, e incluso, los de hormigón suelen ser de hormigón en masa. Por ese motivo, se ha perdido la antigua costumbre de hacer cálculos estructurales para obtener los momentos flectores.

D. César Fernández-Nespral, del Ministerio de Fomento; D. Carlos Oteo, de la Universidade da Coruña; y D. Fernando Puell, de Geotecnia y Cimientos, S.A., presentaron las "Soluciones geotécnicas en los emboquilles de los túneles de Barañaviella y Niévares". La nueva autovía Gijón-Villaviciosa, en su tramo Infanzón-Grases, cuenta con dos túneles dobles que atraviesan terrenos jurásicos formados por margas arcillosas y calizas kársticas. De ellos, tan sólo exponemos la boca sur del túnel de Niévares, cuyo talud frontal se materializó con un único plano para los dos túneles debido al escaso recubrimiento en la calzada

derecha, realizándose un ligero esviaje de unos 15°, respecto a la normal al trazado para conseguir un recubrimiento suficiente. En los taludes de excavación, la inclinación elegida fue el 1H:1V para las margas, tendiéndose al 3H:2V en la zona superior de suelos y margas más alteradas, dejando una berma de 5 m de ancho entre ambos túneles. Se incorporaron cunetas revestidas en coronación y berma.

Para aumentar la seguridad frente al deslizamiento, se ejecutó un sostenimiento sobre el talud frontal formado por mallazo, bulones de 25 mm de diámetro y 6 m de longitud repartidos en cuadrículas 4x4 m, más 10 cm de hormigón proyectado y drenes californianos cada 20 m2. Entre los dos tubos, se dejó un manchón central de la misma altura que la clave del túnel y en todo el ancho entre túneles. Además, se ejecutó un paraguas de micropilotes, pesado, de 30 m de longitud, necesario por la mala calidad geotécnica de las margas. Una vez realizado su anillo de atado, se construyeron viseras exteriores de protección; y se cubrió, en el tubo izquierdo con escollera para aumentar la estabilidad de la zona en la que el talud sobrepasaba los 35 m de altura. Posteriormente, para la excavación bajo la escollera en la etapa de destroza, se diseñó un refuerzo de los hastiales en los primeros 20 m de túnel, mediante "soil nailing" ejecutándose por bataches en dos fases descendentes. En los 30 m iniciales del túnel, bajo el paraguas de micropilotes, se ejecutó un sostenimiento rígido con contrabóveda formado por 30 cm de hormigón y cerchas HEB-180 cada metro y se reforzó también la solera con una losa provisional de hormigón de 25 cm.

"Obras de reparación de daños ocasionados en el túnel de El Estrecho y en la CN-120. Pk 437+600 al 439+700. Provincia de Ourense", fue

El Sr. Mazón
afirmó que no
hay progreso sin
infraestructuras
y que el ejercicio
profesional nos
debe de llenar
de orgullo

la presentación de **D. Adolfo Güell,** de *Ministerio de Fomento*, quien expuso que los movimientos geotécnicos que tienen lugar entre los pp.kk. 437+600 al 439+700 de la N-120 fueron causa de la aparición de una serie de deformaciones en la bóveda y en los hastiales del túnel de El Estrecho y que ocasionaron un grave deterioro del firme. De las investigaciones, se obtuvo como causa más probable del deterioro el deslizamiento tipo *creep* de la ma-

sa coluvial sobre la roca subvacente, que englobó roturas circulares de menor entidad (reptación en escamas). Las medidas adoptadas fueron la construcción de 2 pantallas de micropilotes ancladas mediante anclajes activos en materiales competentes, con vigas de reparto en los distintos niveles de anclaje y empotrada en el sustrato rocoso, la reparación del falso túnel, el anclaje de los muros de contención y la reposición del firme. Se dio continuidad al hormigón mediante un tratamiento en las fisuras, consistente en la limpieza mediante chorros de agua, saneo de los elementos sueltos en el interior y tratamiento con resina de los labios de las fisuras de mayor apertura y relleno con mortero de retracción de alta resistencia.

La "Solución numérica de las deformaciones del terreno en las obras subterráneas y su aplicación a la auscultación de túneles carreteros" fue presentada por D. Juan C. Monge, del GIF, y D. Manuel Arlandi, de Geoconsult", que expusieron la resolución, mediante elementos finitos, del problema de las deformaciones producidas en obras subterráneas. Se obtuvieron formulaciones y gráficos que permiten estimar los movimientos auscultados durante la ejecución de túneles. Aunque el campo de validez queda limitado a la forma de la sección de avance de túneles de autovía, los resultados sugieren que las formulaciones que rigen los movimientos del terreno se asemejan a una formulación "patrón" deducida analíticamente por Kirsh (1898) para la secciones circulares en campo isótropo y macizo indefinido.

Los resultados, que se presentaron de forma gráfica, dieron fe de la notable influencia del coeficiente de empuje al reposo del macizo rocoso (k₀) y del coeficiente de Poisson v, tanto en la determinación del coeficiente del anisotropía k, como en la determinación de las deformaciones en la roca circundante. Mediante la relación entre las convergencias horizontal y diagonal medidas durante la construcción de un túnel, se puede determinar el valor del parámetro K₀ del macizo rocoso.

"El túnel de L'Ollería en Valencia. Estabilización de un gran deslizamiento en el emboquille sur", de D. Javier Cordollat, de Técnica y Proyectos, informó que en el año 2000 comenzaron las obras del nuevo túnel de l'Ollería. Para llegar hasta la zona de emboquillado del lado sur del túnel fue necesario excavar una trinchera de 400 m de longitud con una altura máxima de desmonte de 40 m. En una primera fase se excavó sólo la parte necesaria para comenzar el túnel y, posteriormente, a finales del 2001, se realiza el resto de la excavación de esta trinchera. Después, en los primeros meses de 2002 aparecieron los primeros síntomas de un deslizamiento en el talud oeste de la trichera, manifestándose principalmente en fisuras en las edificaciones allí existentes. Se procede a su estudio y los resultados de los instrumentos hicieron pensar en un deslizamiento de 1 millón de toneladas. Por ello, se realizó un falso túnel de 263 m de longitud capaz de soportar y transmitir los empujes de la ladera deslizada hacia el terreno del lado opuesto, y ejecutar sobre él un relleno de tierras de hasta 10 m sobre la clave. Los resultados pueden calificarse de satisfactorios a la vista de los datos ofrecidos por los inclinómetros desde que se inició el relleno. Con las lluvias otoñales y el inicio del relleno, se aprecia una estabilización en la velocidad del movimiento en unos 7 mm/mes. Finalmente, conforme el relleno se acerca a donde se encuentra el inclinómetro, comienza el frenado definitivo.

D. Jorge Cañizal, Dña. Almudena Da Costa, D. José R. González y D. César Sagaseta, de la Universidad de Cantabria; y D. José A. Herrero, del Ministerio de Fomento: D. Fernando Tolosa, de Incosa-GOC-UTE; y D. Rafael Diez Almagro, de Silga, S.L., presentaron el "Emboquille Norte del túnel de Gedo en la autovía de Cantabria a la Meseta", informando que la boca norte del túnel de Gedo, de 2,4 km de longitud y 2 tubos paralelos, uno por calzada, de sección circular y 13,4 m de diámetro de excavación, se ubica en una ladera recubierta de gran espesor de materiales coluviales. Al iniciarse la excavación del talud frontal, se produjo un deslizamiento de dimensiones relativamente grandes, cuvo pie se situaba inmediatamente encima de la futura clave del túnel. La comunicación describió el análisis de las alternativas consideradas y la elegida que consistió en una estructura porticada, con paredes laterales y frontal de pilotes de gran diámetro y losa superior armada. A partir de ella, se comenzó la excavación del túnel, con protección de paraguas de micropilotes, habiéndose atravesado más de 100 m hasta llegar al sustrato rocoso. Las estructuras porticadas se construyeron sin presentar problemas especiales, la consistencia del coluvial en el interior del macizo fue relativamente buena y sin problemas de inestabilidad de las paredes por debajo del tramo entubado, así como la excavación del túnel y la consistencia del terreno.

Clausura

A continuación, tuvo lugar el acto de clausura que fue presidido por el Consejero de Obras Públicas y Vivienda del Gobierno de Cantabria, D. José Mª. Mazón, interviniendo en primer lugar, el Director de las jornadas, D. Jesús Santamaría, quien hizo una breve exposición de los temas más importantes tratados, subrayando a modo de reflexiones algunas cuestiones fruto de las 62 ponencias y comunicaciones presentadas, 32 de las cuales fueron expuestas. Por su parte, D. Vicente Cuéllar, Presidente de la Sociedad Española de Mecánica del Suelo, calificó de experiencia valiosa el evento y deseó que no se esperaran otros 9 años para seguir convocando este tipo de foros, que suponen una puesta al día sobre el estado del arte. Posteriormente, intervinieron D. Claudio Olalla, del CE-DEX. y D. Vicente Revilla, Jefe de la Demarcación de Carreteras del Estado en Cantabria, quienes hicieron una defensa de la ingeniería y de la labor de los ingenieros en pro de la sociedad y subrayando la cualificación de los ingenieros geotécnicos de nuestro país. Finalmente, el Sr. Mazón afirmó que no hay progreso sin infraestructuras y que el ejercicio profesional nos debe de llenar de orgullo, porque es una gran profesión que colabora con el progreso, con el desarrollo sostenible y con el bienestar del ciudadano.