ÍNDICE

1	INTRO	DUCCIÓN			
2	MATE	NATERIALES COMPUESTOS			
	2.1	FIBRA	S	29	
		2.1.1	Características mecánicas de las fibras	34	
		2.1.2	Resistencia al ataque químico	38	
		2.1.3	Exposición a los rayos ultravioletas	38	
		2.1.4	Conductividad eléctrica	38	
		2.1.5	Estabilidad térmica	38	
	2.2	MATRIZ			
		2.2.1	Naturaleza de la matriz	39	
		2.2.2	Propiedades de las matrices	39	
	2.3	UNIÓN FIBRA Y MATRIZ SINTÉTICA			
	2.4	ADHE:	ADHESIVOS		
	2.5	EL MATERIAL COMPUESTO			
		2.5.1	Características mecánicas del material compuesto	47	
		2.5.2	Ensayos de control de las características mecánicas del MC	47	
		2.5.3	Resistencia al fuego del sistema de MC	49	

		2.5.4	Coeficientes de seguridad	50
	2.6	SISTEN	MAS DE APLICACIÓN	51
		2.6.1	Hojas o tejidos "in-situ"	51
		2.6.2	Laminado	52
		2.6.3	Barras	52
		2.6.4	NSM (Near Surface Mounted)	53
3	RECOI	MENDA	CIONES DE DISEÑO	55
	3.1	CRITER	RIOS GENERALES DE DISEÑO Y SEGURIDAD ESTRUCTURAL	55
		3.1.1	Bases Generales de Cálculo	55
		3.1.2	Criterios Generales de Diseño	58
			3.1.2.1 Situaciones Accidentales	59
			3.1.2.2 Durabilidad	60
	3.2		EDIMIENTO DE CÁLCULO DE REFUERZO CON RIALES COMPUESTOS	60
	3.3		O LÍMITE DE AGOTAMIENTO FRENTE A ITACIONES NORMALES. REFUERZO A FLEXIÓN	62
		3.3.1	Consideraciones generales	62
		3.3.2	Modos de fallo	63
		3.3.3	Comprobación modo de fallo 1 y 2	65
		3.3.4	Formulación para flexión simple	68
			3.3.4.1 Estado de cargas previo	68
			3.3.4.2 Verificación en rotura	70

	3.3.5	Comprobación frente al arrancamiento o fallo a rasante en el extremo del refuerzo	73				
	3.3.6	Despegue producido por fisuras a cortante	74				
	3.3.7	Despegue producido por fisuras a flexión					
	3.3.8	La ductilidad como criterio de respuesta segura frente al colapso					
	3.3.9	Consideraciones especiales					
		3.3.9.1 Refuerzo de estructuras pretensadas o postesadas	<i>7</i> 8				
		3.3.9.2 Trabajo a compresión	<i>7</i> 8				
		3.3.9.3 Refuerzo mediante pretensado externo con FR	RP 79				
3.4	REFUERZO FRENTE A ESFUERZOS CORTANTES						
	3.4.1	Introducción	80				
	3.4.2	Configuraciones del refuerzo. Canto útil					
	3.4.3	Dimensionamiento del refuerzo a cortante	85				
		3.4.3.1 Agotamiento de las bielas comprimidas de hormigón	e 86				
		3.4.3.2 Agotamiento por tracción en el alma	86				
		3.4.3.3 Otros documentos de referencia	91				
3.5	CONFINAMIENTO						
	3.5.1	Consideraciones Generales	93				
	3.5.2	Presión de confinamiento efectiva	95				
		3.5.2.1 Influencia de la envoltura parcial.	98				
		3.5.2.2 Influencia de la forma de la sección.	98				

	3.5.3	Modelo de Lam y Teng (2003a,b)	100		
		3.5.3.1 Secciones circulares	100		
		3.5.3.2 Secciones rectangulares	101		
	3.5.4	Recomendaciones de cálculo	102		
		3.5.4.1 Deformación última efectiva del FRP	104		
		3.5.4.2 Influencia de la forma de la sección	105		
3.6	ESTADO LÍMITE DE SERVICIO				
	3.6.1	Estado de cargas previo	105		
	3.6.2	Limitación de las tensiones máximas	106		
	3.6.3	Estado Límite de Fisuración	106		
		3.6.3.1 Condiciones generales.	106		
		3.6.3.2 Cálculo del ELS de Fisuración con el FIB Bulletin 14	107		
	3.6.4	Estado Límite de Deformación	109		
	3.6.5	Estado Límite de Vibraciones	110		
3.7	EJEMPLOS DE DISEÑO				
	3.7.1	Ejemplo de refuerzo a flexión	111		
		3.7.1.1 Planteamiento del problema	111		
		3.7.1.2 Notación	112		
		3.7.1.3 Capacidad resistente de la viga original	113		
		3.7.1.4 Estado previo al refuerzo y deformaciones existentes	115		
		3.7.1.5 Flector respuesta de la viga reforzada	117		
		3.7.1.6 Estados tensionales en servicio	120		

		3.7.2	Ejempl	o de refuerzo a cortante	123
			3.7.2.1	Planteamiento del Problema	123
			3.7.2.2	Análisis de la estructura y cargas actuantes sobre la viga	124
			3.7.2.3	Análisis de la necesidad de refuerzo	125
			3.7.2.4	Comprobación en situación accidental	126
			3.7.2.5	Determinación de la cuantía del refuerzo.	126
		3.7.3	Ejemplo	de confinamiento de acuerdo con CNR-DT 200/2004	130
			3.7.3.1	Planteamiento del problema	131
			3.7.3.2	Caso 1: Confinamiento integral.	131
			3.7.3.3	Caso 2: Confinamiento parcial.	133
ı	RECON	ИENDAC	CIONES	CONSTRUCTIVAS DE APLICACIÓN	135
	4.1	INTRO	DUCCIÓI	N	135
	4.2	RECOMENDACIONES GENERALES PARA EL TRANSPORTE, ALMACENAMIENTO Y MANIPULACIÓN			
	4.3	RECOM	IENDACI	IONES GENERALES PARA LA EJECUCIÓN	136
		4.3.1	Prepara	ación del soporte	136
		4.3.2	Procedi	imiento de aplicación de hojas o tejidos de FRP	142
		4.3.3	Proced	imiento de aplicación de laminados de FRP	149
		4.3.4		imiento de aplicación de barra y laminados en rozas (sistema NSM)	152
		4.3.5	Puesta	en servicio de la estructura	157
		436	Duotoss	ción v acabado	158

	4.4	RECOMENDACIONES PARA RECEPCIÓN, MANTENIMIENTO Y EXPLOTACIÓN		
		4.4.1 Recepción	159	
		4.4.2 Mantenimiento y explotación	160	
	4.5	SEGURIDAD	160	
5		MENDACIONES DE CONTROL DE CALIDAD EN ERZOS CON FRP EN PUENTES	165	
	5.1	INTRODUCCIÓN	165	
	5.2	RECEPCIÓN DE LOS MATERIALES	166	
	5.3	PREPARACIÓN DEL SOPORTE	167	
	5.4	CONDICIONES ATMOSFÉRICAS	170	
	5.5	INSTALACIÓN DE TEJIDO U HOJA	171	
	5.6	INSTALACIÓN DEL LAMINADO	172	
	5.7	CONTROL FINAL DE OBRA, ENSAYOS DE ADHERENCIA	173	
	5.8	CRITERIOS DE ACEPTACIÓN Y MEDIDAS CORRECTORAS COMO RESULTADO DE LOS ENSAYOS DE ADHESIÓN	177	
	5.9	PRUEBAS DE CARGA	178	
	5.10	RECOMENDACIONES DE CAPACITACIÓN Y/O CERTIFICACIÓN DE PERSONAL (INFORMATIVO)	178	
		5.10.1 Requisitos de aplicación y control de calidad	178	
		5.10.2 Reconocimiento de la competencia de personas	179	
		5.10.3 Esquema general de procedimiento de certificación de personas	180	

6	EJEMPLOS DE REALIZACIONES	183			
7	REFERENCIAS BIBLIOGRÁFICAS	197			
ANEXO I: NOTACIONES Y SÍMBOLOS					
	<u>ÍNDICE DE FIGURAS</u>				
Figura 2.1	. Material compuesto reforzado con partículas o con fibra	26			
Figura 2.2	. Disposición en desarrollo helicoidal, tras la impregnación automática del MC in situ	26			
Figura 2.3	. MC ejecutado in situ, con espolvoreo de árido final, listo para recibir un enfoscado de terminación	26			
Figura 2.4	. Protección de una pila (Lisboa, puente "Vasco da Gama") mediante encapsulamiento con camisa de MC e inyección de adhesivo. Permite una puesta en obra bajo agua	27			
Figura 2.5	. Sujeción temporal de las camisas prefabricadas de MC realizadas con fibra de vidrio, previo a la inyección de adhesivo estructural que desplaza el agua. El adhesivo empleado debe ser compatible con soporte mojado	27			
Figura 2.6	. Laminados preformados preparados para su adhesión	27			
Figura 2.7	. Formatos variados: en barra, circulares preformados, etc.	28			
Figura 2.8	. Sistema de refuerzo con NSM	28			
Figura 2.9	. Ordenamiento hexagonal de la red de átomos de carbono	30			
Figura 2.1	0. Proceso de fabricación de la fibra de carbono	30			

Figura 2.11. Fibra de vidrio bidireccional 36 Figura 2.12. Fibra de aramida 36 Figura 2.13. Fibra de carbono 36 Figura 2.14. Diagramas tensión-deformación de las fibras de carbono, vidrio y Kevlar 49 37 Figura 2.15. Diagrama tensión-deformación de resinas termoestables 41 Figura 2.16. Ejemplo de daño por fuego 50 Figura 2.17. Sistema de refuerzo por moldeo manual 51 Figura 3.1. Ejemplo de rotura de refuerzo 59 Figura 3.2. Esquema del procedimiento de cálculo para refuerzo con materiales compuestos 61 Figura 3.3. Ejemplo de tablero de hormigón reforzado con fibras 62 Figura 3.4. Fallo por compresión excesiva del hormigón 63 Figura 3.5. Fallo por rotura del refuerzo 63 Figura 3.6. Fallo por cortante en el apoyo 64 Figura 3.7. Fallo por arrancamiento del hormigón de recubrimiento, en la zona de anclaje del refuerzo 64 Figura 3.8. Fallo por despegue del refuerzo en la zona de anclaje 64 Figura 3.9. Fallo por despegue del refuerzo inducido por una fisura de flexión 65 Figura 3.10. Fallo por despegue del refuerzo inducido por una fisura de cortante 65 Figura 3.11. Sección genérica sometida a esfuerzos normales 66 Figura 3.12. Dominios de deformación 67 Figura 3.13. Sección rectangular 68 Figura 3.14. Plano de deformación 68

REFUERZO CON MATERIALES COMPUESTOS EN PUENTES DE HORMIGÓN

Figura 3.15. Esfuerzos a nivel de sección	69
Figura 3.16. Sección rectangular	70
Figura 3.17. Plano de deformación	70
Figura 3.18. Esfuerzos a nivel de sección	71
Figura 3.19. Distribución de fisuras de rasante en un elemento sin reforzar (a) y reforzado (b)	73
Figura 3.20. Despegue del refuerzo por fisuración de cortante	74
Figura 3.21. Viga de hormigón reforzado con FRP, sometida a flexión	75
Figura 3.22. Distribución de tensiones normales en refuerzo y hormigón, y tensiones tangenciales	75
Figura 3.23. Diferentes tipos de refuerzos de cortante	83
Figura 3.24. Refuerzos en U en vigas de sección en T	83
Figura 3.25. Mechas para el anclaje de las bandas en caras laterales	90
Figura 3.26. Curvas tensión-deformación de hormigón confinado con FRP	94
Figura 3.27. Acción de confinamiento en secciones circulares	96
Figura 3.28. Efecto de la separación entre bandas en el confinamiento	98
Figura 3.29. Área efectivamente confinada en secciones rectangulares	99
Figura 3.30. Modelo tensión-deformación de hormigón confinado con materiales compuestos	100
Figura 3.31. Notación propuesta	113
Figura 3.32. Esquema de fuerzas sin el refuerzo de fibra	114
Figura 3.33. Esquema lineal para obtención de elongación inicial en paramento traccionado	115
Figura 3.34. Esquema de rotura con la contribución del material compuesto A _g E _f	117
Figura 3.35. Esquema en servicio con la contribución del material compuesto A _g E _f	120
Figura 3.36. Eiemplo de pilar con confinamiento integral	131

Figura 3.37. Ejemplo de pilar con confinamiento parcial 133 Figura 4.1. Foto de reparación del soporte a base de morteros estructurales, previa a la aplicación del refuerzo con FRP 137 Figura 4.2. Patrón de rugosidades según el International Concrete Repair Institute 138 Figura 4.3. Ejemplo de preparación de soporte 139 Figura 4.4. Geometría de reparación mediante parcheo por mortero 140 Figura 4.5. Ejemplo de fuerza de empuje al vacío 140 Figura 4.6. Prescripción de preparación de esquinas o curvas 141 Figura 4.7. Foto de prueba de tracción directa para validación de soporte 141 Figura 4.8. Ejemplo: Mezclado de resina bicomponente para impregnación de hojas o tejidos 143 Figura 4.9. Proceso de mezclado de resina bicomponente 143 Figura 4.10. Ejecución de capa de imprimación o encolado mediante rodillo 144 Figura 4.11. Instalación de tejido sobre capa de impregnación 145 Figura 4.12. Estratificación de tejido con rodillo estratificador 146 Figura 4.13. Aplicación de capa de cierre y alisado posterior con llana 147 Figura 4.14. Esquema de diseño (ver recrecido para evitar empuje al vacío) 147 Figura 4.15. Preparación soporte, capa de impregnación y colocación de tejido 147 Figura 4.16. Estratificación con rodillo 148 Figura 4.17. Colocación de mechas de anclaje en cabeza de compresión: taladro e inyección de resina 148 Figura 4.18. Colocación de mechas de anclaje en cabeza de compresión: colocación, apertura zona exterior e impregnación de resina 148 Figura 4.19. Colocación de mechas de anclaje en cabeza de compresión: capa de cierre

148

y estratificación

REFUERZO CON MATERIALES COMPUESTOS EN PUENTES DE HORMIGÓN

Figura 4.20. Acabado	149
Figura 4.21. Adhesivo aplicado con tiempo frío con fallo entre capas por falta de mojado.	149
Figura 4.22. Aplicación de adhesivo sobre soporte y sobre laminado previa a la instalación	150
Figura 4.23. Ejecución de operación de apriete con rodillo de goma para eliminación de aire entre capas	151
Figura 4.24. Ejemplo de puente reforzado con laminados	152
Figura 4.25. Barra de fibra de carbono	153
Figura 4.26. Dimensiones a definir en las rozas	154
Figura 4.27. Realización de rozas: máquina, disco, control de geometría e imagen general	155
Figura 4.28. Limpieza de rozas con aire a presión previa a inyección	155
Figura 4.29. Llenado de rozas con resina: manual y máquinas con caudal controlado	156
Figura 4.30. Esquema de nivel óptimo de resina	156
Figura 4.31. Colocación de barras en resina	157
Figura 4.32. Posibles acabados	159
Figura 5.1. Ensayo pull-off	174
Figura 5.2. Ensayo de tracción directa y valor obtenido en ensayo	175
Figura 5.3. Termografía	176

ÍNDICE DE TABLAS

Tabla 2.1.	Materiales compuestos	24
Tabla 2.2.	Matrices poliméricas u orgánicas	25
Tabla 2.3.	Composición de la fibra de vidrio	32
Tabla 2.4.	Propiedades de las fibras de Carbono, Vidrio y Kevlar 49 a 20° C	34
Tabla 2.5.	Propiedades de las fibras	35
Tabla 2.6.	Valores típicos de las propiedades de las fibras	37
Tabla 2.7.	Propiedades típicas de las resinas epoxi y poliéster usadas en los materiales compuestos	40
Tabla 2.8.	Propiedades genéricas de las resinas	44
Tabla 2.9.	Ensayos a realizar para clasificación del adhesivo apto para refuerzo estructural	46
Tabla 2.10.	Propiedades MC	47
Tabla 211.	Métodos de ensayo para FRP (tomada de S806-12 (2012))	48
Tabla 2.12.	Formato y dimensiones de tejidos	51
Tabla 2.13.	Formato y dimensiones de laminados	52
Tabla 2.14.	Formato y dimensiones de barras	52
Tabla 3.1.	Ecuaciones para el cálculo de la resistencia y deformación última en las guías	103